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This chapter describes tools for modelling the volatility of a process that are
implemented in the ARCH Analysis frame of JMulTi .
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1 Univariate ARCH and GARCH models

The statistical tools described in this section are designed to model and forecast
the conditional variance, or volatility, instead of the conditional mean of a vari-
able. The analysis of the conditional variance may be useful for several reasons
such as pricing an option or improving the estimation of forecast intervals.

The models described below assume that the conditional variance in time t
depends on past errors and variances. They are designed to model time varying
volatility, in particular volatility clustering - a feature often displayed by finan-
cial market series. The variance at time t is expected to be higher when past
errors and variances were higher in the past and vice versa.

The phenomenon of time varying volatility is well known and generated a
vast body of econometric literature following the seminal contributions by En-
gle (1982), Bollerslev (1986) and Taylor (1986) introducing the (generalized) au-
toregressive conditionally heteroskedastic ((G)ARCH) process and the stochastic
volatility model, respectively. In the following we describe the basic features of
these models and deal with the estimation and some extensions of the basic
models that are available in JMulTi . Finally we describe how these models are
implemented in JMulTi .

1.1 Basic features and theoretical properties

A simple parametric model allowing for time varying volatility is the ARCH(q)
(Engle, 1982) process ut with conditional variance σ2

t :

ut = ξtσt, ξt iid N(0, 1), (1)
σ2

t = ω + γ1u
2
t−1 + γ2u

2
t−2 + . . . + γqu

2
t−q (2)

= z′tθ (3)

An intrinsic property of the definition is that the second order moment of
ut is given conditional on an information set containing especially the his-
tory of the process. In the compact notation (3) zt = (1, u2

t−1, . . . , u
2
t−q)

′ and
θ = (ω, γ1, . . . , γq)′. The q + 1 vector θ collects the parameters of interest. The
process is termed ARCH process since heteroskedasticity is parameterized con-
ditionally in an autoregressive manner. Sufficient conditions for the conditional
variances σ2

t to be positive are

ω > 0, γi ≥ 0, i = 1, . . . , q.
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The generalization of the ARCH process is the so-called generalized ARCH
(GARCH) process (Bollerslev, 1986). A GARCH (q, p) process ut can be written
as

ut = ξtσt, ξt iid N(0, 1), (4)
σ2

t = ω + γ1u
2
t−1 + γ2u

2
t−2 + . . . + γqu

2
t−q + β1σ

2
t−1 + . . . + βpσ

2
t−p (5)

= z′tθ (6)

Note that the case p = 0 in (5) covers the ARCH(q) process. Sufficient condi-
tions for the conditional variances σ2

t to be positive are for the GARCH model

ω > 0, γi, βj ≥ 0, i = 1, . . . , q, j = 1, . . . , p.

As provided in (5) the GARCH model is characterized by a symmetric response
of current volatility to positive and negative lagged errors ut−1. Since ut is
uncorrelated with its history it could be interpreted conveniently as a measure
of news entering a financial market in time t.

To allow for different impacts of lagged positive and negative innovations
threshold GARCH models have been introduced by Glosten, Jagannathan and
Runkle (1993). The threshold GARCH(1,1) (TGARCH(1,1)) model takes the
following form:

σ2
t = ω + γ1u

2
t−1 + γ−1 u2

t−1I(ut−1<0) + β1σ
2
t−1. (7)

In (7), I(·) denotes an indicator function that assumes the value 1 if the past
innovation has been negative. The asymmetric effect is covered by the TGARCH
model if γ−1 > 0.

1.2 Estimation

Maximum Likelihood (ML) estimation of GARCH models faces the difficulty
that available observations (ut) or estimates (ût) are not independent. There-
fore the specification of the joint density makes use of its representation as the
product of some conditional and the corresponding marginal density. Let UT−1

denote the sequence of random variables containing u0, u1, . . . , uT−1. Assuming
u0 to be constant or drawn from a known distribution the joint distribution of
a finite stretch of a GARCH-process is:

f(u1, . . . , uT ) = f(uT |UT−1) · f(UT−1)
= f(uT |UT−1)f(uT−1|UT−2) · · · f(u1|U0)f(U0) (8)

The conditional distributions in (8) are available from the definition of the
GARCH(q, p) process in (5). Then, the log-likelihood function is conditional on
some initialization σ0 given as:

l(θ|u1, . . . , uT ) =
T∑

t=1

lt (9)

=
T∑

t=1

(
−1

2
ln(2π)− 1

2
ln σ2

t −
1
2

u2
t

σ2
t

)
. (10)

3



The maximum likelihood estimator is the specific parameter vector θ̂ that max-
imizes the log-likelihood function. Compared to the common case with inde-
pendent random variables the maximum of the likelihood function cannot be
obtained analytically but requires iterative optimization routines.

A particular optimization routine which is often used to estimate the models
in (2), (5) and (7) - and implemented in JMulTi - is the BHHH algorithm named
after Berndt, Hall, Hall and Hausman (1974). According to this algorithm the
i−th step estimate is obtained as

θ̂i = θ̂i−1 + φ

(
T∑

t=1

∂lt
∂θ

∂lt
∂θ′

∣∣∣
θ=θ̂i−1

)−1 T∑
t=1

∂lt
∂θ

∣∣∣
θ=θ̂i−1

. (11)

where φ > 0 is used to modify the step length.
Under regularity conditions (Davidson, 2000) the ML-estimator θ̂ converges

at rate
√

T and is asymptotically normally distributed, i.e.

√
T (θ̂ − θ) d→ N(0, S−1), (12)

where S is the expectation of the outer product of the scores of lt(θ),

S =
1
T

T∑
t=1

E

[
∂lt
∂θ

∂lt
∂θ′

]
.

The log-likelihood function in (10) is determined under the assumption of
conditional normality stated in (1). Ignoring non normality of innovations
ξt will result in a misspecification of the log likelihood function. Maximiz-
ing the misspecified Gaussian log-likelihood function is, however, justified by
quasi maximum likelihood theory. For a wide variety of strictly stationary
GARCH processes consistency and asymptotic normality of the QML estimator
have been shown (Bollerslev and Wooldridge, 1992; Lumsdaine, 1996; Lee and
Hansen, 1994). If the normality assumption is violated the covariance matrix of
the QML estimator is

√
T (θ̂ − θ) d→ N(0, D−1SD−1), (13)

where D is the negative expectation of the matrix of second order derivatives

D =
1
T

T∑
t=1

−E

[
∂2lt

∂θ∂θ′

]
. (14)

Analytical expressions for the derivatives necessary to implementing the
BHHH algorithm or (Q)ML inference are given in Bollerslev (1986) for the
general case of ARMA(p, q) processes with GARCH(q, p) error terms.
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1.3 Extensions

1.3.1 Conditional Leptokurtosis

As it is often argued in empirical contributions the normal distribution specified
in (1) is rarely supported by real data. If an alternative parametric distribution
can reasonably be assumed exact ML methods may outperform QML estimation
in terms of efficiency. On the contrary ML estimation under misspecification of
the (non Gaussian) conditional distribution may yield inconsistent parameter
estimates (Newey and Steigerwald, 1997).

Moreover, if the normality assumption is violated it is no longer possible
to provide valid forecasting intervals for ut+h given Ωt by means of quantiles
of the Gaussian distribution. To improve forecast intervals it pays to consider
a leptokurtic distribution of ξt. Therefore GARCH models under the condi-
tional t−distribution and the generalized error distribution (GED) are imple-
mented in JMulTi . We state here for convenience the density functions of the
t−distribution and the GED:

t-distribution A random variable ut is t−distributed with v degrees of free-
dom, mean zero and variance σ2

t if it has the following density:

f(ut|v) =
vv/2Γ

(
v+1
2

)
√

π Γ(v
2 )

√
(v−2)σ2

t

v

(
v +

v · u2
t

(v − 2)σ2
t

)−( v+1
2 )

. (15)

In (15) Γ(.) denotes the Gamma function. Recall that for v → ∞ the density
in (15) coincides with the Gaussian density.

generalized error distribution According to this distribution with shape
parameter v, a zero mean random variable ut with variance σ2

t has the following
density:

f(ut|θ, v) = v exp
(
−1

2

∣∣∣∣
ut

λ · σt

∣∣∣∣
v)[

2
v+1

v Γ
(

1
v

)
λ · σt

]−1

, (16)

where λ is defined as

λ =

[
Γ( 1

v )

2
2
v Γ( 3

v )

]0.5

. (17)

In case v = 2 the density in (16) is equal to the N(0, σ2
t ) density, the distribution

becomes leptokurtic if v < 2. For v = 1 (v → ∞) the GED coincides with
the (approximates the) double exponential (rectangular) distribution (Harvey,
1990).

1.4 Implementation and Specification in JMulTi

In JMulTi the basic ARCH(q), GARCH(q, p) and TGARCH(q, p) models given
in (2), (5) and (7) can be estimated up to orders q = 5 and q = p = 2, respec-
tively. Maximum likelihood estimation can be performed under the assumptions
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of conditional normality (1), a conditional t−distribution (15) or a conditional
GED (16). Consequently one has to specify the basic model, the lag-lengths
and the assumed conditional distribution.

The output consists of the parameter values (where gamma denotes the pa-
rameters of lagged errors and beta denotes the parameters of lagged variances),
the respective t-values, the variance-covariance matrix and the value of the log
likelihood function. Additionally the estimated residuals ξ̂t can be analyzed.

The empirical mean of the outer product of the log-likelihood scores (12) is
used to estimate the covariance matrix of the ML estimates (Davidson, 2000).
The BHHH in (11) is implemented using analytical derivatives of the corre-
sponding likelihood functions. Derivatives of the Gamma function, Γ′(.), are
evaluated numerically. Depending on the order of the process ARCH-parameters
(γ1, γ

−
1 ) are initialized with small values whereas initial GARCH parameters are

larger without violating the condition for covariance stationarity. For a given
initialization of these parameters the initial deterministic variance component
is obtained using its link to the unconditional expectation E[u2

t ]. At each iter-
ation the BHHH algorithm compares alternative parameters given by the step
lengths. Different step lengths, φ, are employed to economize on computing
time.
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2 Multivariate GARCH(1,1)

Multivariate GARCH models are a conceptually straighforward generalization
of univariate models. Problems stem from the fact that a very large parameter
space is involved, posing analytical and computational problems. The repre-
sentation being used in JMulTi is the BEKK form ((Baba, Engle, Kraft and
Kroner, 1990)) in its simplest form with N = p = q = 1. The estimation
is implemented for a GARCH(1, 1) model, see ((Herwartz, 2004)) for a more
detailled description.

Figure 1: Screenshot of output for multivariate GARCH(1, 1) estimation

Multivariate GARCH(1, 1) models can be specified for dimensions of 2, 3,
and 4 variables. The model is estimated with a quasi maximum likelihood
(QML) estimator under normality assumption. As an option it is possible to
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compute the exact QML t-ratios which require to evaluate the 1st and 2nd order
derivatives of the Gaussian likelihood function analytically. The latter is left as
an option to the user because the computation might be quite time consuming.

• Input - The procedure is defined in terms of the second moments of
a serially uncorrelated but conditionally heteroskedastic K-dimensional
vector ut = (u1,t, u2,t, ..., uK,t) that is normally distributed ut|Ωt−1 ∼
N(0, Σt). Input variables are taken for realizations of ut and should satisfy
those assumptions.

• Estimation - The output (Figure 1) consists of the parameter values
(where gamma denotes the parameter matrices of lagged errors and beta
denotes the parameter matrix of lagged variances), the respective t-values,
and the value of the log likelihood function. Furthermore, the modulus
of the eigenvalues of the polynomial describing the unconditional mean of
the covariance process are given to check for covariance stationarity.

• Diagnostics - To check whether the residuals meet the required assump-
tions, a number of multivariate diagnostic tests can be applied. Available
are the Portmanteau test, the ARCH-LM test, plots of the AC and PAC
functions of the residuals, Jarque-Bera tests for nonnormality, as well as
plots of the estimated standard deviation process. It is also possible to
plot estimated univariate GARCH(1, 1) processes together with the mul-
tivariate variance processes to analyse the differences.

• Kernel Density Estimation - Kernel density estimates can be done for
each of the estimated residual series ξ̂t.
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