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The initial analysis provides a starting point for the time series analysis with JMulTi . It con-
tains plots of important characteristics as summarized in the spectrum and autocorrelation
functions and there are also tests for the order of integration as well as cointegration tests,
which should help choosing an appropriate statistical model. More general tasks, like im-
porting, manipulating and transforming time series, managing data sets, etc. are described
in the help section JMulTi -General Help.



1 Plot Time Series

1.1 Specification in JMulTi

Plot I TestsiS‘tatsI .&utu:u:u:urr.l Speu:truml Kernel DEI"IS,i‘t':."I Firterl Crogaplots

[ Time seties indexed (mean-= 1007
I Divide by standard devistion
I one diagram for each graph

I Plot complete series Flot Series

Figure 1: Specification of Time Series Plots

This panel can be used to configure plots of the selected time series.

time series indexed The mean of the selected series is set to 100 and the observations
are indexed relative to it. This feature is helpful to plot series with different magnitudes in

the same diagram, e.g. interest rates and GNP.
divide by standard deviation The selected series is standardized.

one diagram for each graph FEach graph is shown in its own diagram, otherwise one

diagram is used for all graphs.

plot complete series All available observations of all selected series are plotted together.
If a series is shorter or has missing values then there will be holes in the respective graph.

If not selected then only the selected sample period is plotted.



2 Descriptive Statistics

2.1 Specification in JMulTi

Plot = Tests/Stats I .-“-'-.utu:u:u:urr..l Spec‘truml Kernel Dens'rtyl Firterl Crosaplots

¥ Descriptive statistics
v Jargue-Bera Test
¥ ARCH-LM Test lags !2 Execute
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sample range: [1260 02, 1982 Q4], T = 91

DESCRIPTIVE STATISTICS:

wariahle mean min nax std. dew.
cons_log dl 1.86780e-02 -1.29966e-02 4.453314e-02 1.09604e-02
income log dl 1.94640e-02 -2.88783e-02 5.02321e-02 1.19362e-02

invest log dl 1.6796de-02 -1.40184e-01 1.93585e-01 4.475395e-02

JARQUE-EERL TEST

wariabhle teststat p-¥alue (Chi~2) skewness kurtosis
cons_log dl 1.9144 0.3540 -0.3510 3.1104
income log dl 19,5574 o.0o0olL -0.5317 L.0063
inwest log_dl 40,9279 0.00an 0.3570 6. 2069

Figure 2: Specification of Descriptive Statistics

One may select one or more time series to get tables with the following statistics:

descriptive statistics mean, minimum, maximum, standard deviation, variance

Jarque-Bera Test for a description, see Sec. 13.2

ARCH-LM Test for a description, see Sec. 13.2



3 Autocorrelation

3.1 Specification in JMulTi

Plotl Tests/Stats  Autocorr. l Spectrum | Kernel Dens'rtyi Finerl Crossplots CitlishifaehUliinle Sale stiny)

CONng

¥
i38 Lags for autocarrelstion [ Autocorrelation of squared %
X

income

I Cutput ss text (with Portmantesu stat)

#%% Mon, 1 Mar 2004 10:45:25 #%%
AUTOCOFFELATION FUNCTION (p <= 38)

cona_log_dl income_log_dl invest_log

port 49,1036 27.4992 45,3805
p-wal 0.0714 0. 5446 0.135%9
LsB 6l.58136 34,2740 56,7912
p-wal 0.0047 0. 5508 0.0151
lag ac pac ac pac ac raff

-0.0415 -0.0415 1105 0.1105 -0.16590 -0,
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Figure 3: Specification of AC/PAC

The autocorrelation and partial autocorrelation functions of the selected time series are given

up to the maximum lag order specified.
AC/PAC for a description, see Sec. 13.2

Portmanteau Test for a description, see Sec. 13.2



4 Spectrum

4.1 Background

The ACs of a stationary stochastic process may be summarized compactly in the spectral

density function. It is defined as

f V) =@2m)7 ) ye™ = (2m) 7! <70+22%- cos()\j)) (1)

j=—00 j=1

where ¢ = y/—1 is the imaginary unit, A\ € [—m, 7] is the frequency and the ~; are the

autocovariances of y,;. It is estimated as

~

fy() = (@2m)~! (wo% + Ziwﬂj cos(Aj)) :

j=1

where the weights w; (j = 1,..., M) represent the so-called spectral window and My is the

truncation point. In JMulTi the Bartlett window is used:
w; =1—j/Mr (Bartlett (1950)).

Choosing all w; = 1 and M7y = T — 1 results in the periodogram. In JMulTi it is obtained
by setting the window size to 1.

4.2 Specification in JMulTi
4.2.1 Input

Bartlett window size sets the parameter Mp in 4.1, My = 1 produces the periodogram

of the series.

log scale use log fy()\)



CteliShitt for Multiple Selaction=

F‘Iot] Tests!S‘tatSi Autocorr, Spectrum | Kernel Dens'rtyi Finerl Crossplots

i1 o Bartlett wrindowy size (1 = periodagrarm]

v Cutput as text (no graph)

I~ one disgram for each graph

I Log scale I
L=} Execute ﬁ__ : ‘_,_il_;ljj]
#%% Mon, 1 Mar 2004 10:47:33 ##%% = Sl
SPECTRUM
sample range: [12&0 02, 1982 Q4], T = 9l
Bartlett size: 10
log scale: false
frequence cons_log dl income_log dlinwvest_log ¢
0.0000 1.8765 2.01z26 1.0320
0.0491 1.8660 2.0027 1.0341
0.0852 1.8349 1.9732 1.0185
0.1473 1.7840 1.9245 0.9953
0.1963 1.7145 1.858% 0.9619
0.2454 1.6292 L.7760 0.9200
0.2945 1.5298 L.67395 0.8707
0.3436 1.41%8 1.571%9 0.58154
0.3927 1.3023 1.4566 0.755%
0.4415 1.1514 1.3377 0.6946

Figure 4: Specification of Spectrum



5 Crossplots

5.1 Background

Sometimes it is useful to investigate the direct relationship between two variables. Crossplots
offer an intuitive graphical tool to look at comovements between two different variables. It
may also be helpful to compare the plot with a simple OLS regression line, as well as with

a nonparametric estimate.

5.1.1 OLS Regression

Here a simple OLS regression is carried out, assuming that the model has the form
Yyi = a + [Bx; + uy, where u, is the regression error.

5.1.2 Nadaraya-Watson Regression

A possibly nonlinear regression function is assumed, m(x) = E(Y|X = z),z € R with X
being the design variable and Y the response variable. The Nadaraya-Watson estimator is
defined as

_ Zthl ytK(zft)
> K(552)
K is a kernel function. The kernels available in JMulTi are specified in Sec. 6. h is the

()

bandwidth. Here it is chosen automatically by
h =0.97"°min(6,, [QR/1.34), see Silverman (1986), Eq. (3.31),

where ¢, is the standard deviation and I1Q) R denotes the interquartile range of the x; obser-
vations. As usual, T is the sample size.
The nonparametric estimation does not assume a special functional form for the model and

can therefore capture possible nonlinearities in the relationship between X and Y.

5.2 Specification in JMulTi
5.2.1 Input

variables First select the variables that should be plotted against each other in the time
series list. They will appear in the two tables for the x- and y-axis. Then one can click on

a variable for each axis and invoke the plot.



Plot Testsﬂtatsi .ﬂ-.uh:u:-:urr.! Spedrumi Kernel Density | Fitter  Crossplots
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Figure 5: Specification of Crossplots



6 Kernels

Table 1: Kernels Available in JMulTi

Kernel K(u)
Gaussian (27m) 12 exp(—u?/2)

15 1 — 2\2 f 1
Biweight 16( u?)* for |ul <

0 otherwise
Rectangular 2 ot Jul <

0 otherwise

1— f 1
Triangular ]u\ or \u] <

0 otherwise

31— Lu?)/V5 f
Epanechnikov { S( 5U )/\/_ or |u| < V5

otherwise




7 Unit Root Tests

Because the order of integration of a time series is of great importance for the analysis, a
number of statistical tests have been developed for investigating it. In JMulTi there are
several tests implemented testing the null hypothesis that there is a unit root against the
alternative of stationarity of a DGP which may have a nonzero mean term, a deterministic
linear trend and perhaps seasonal dummy variables. The stochastic part is modeled by an
AR process or, alternatively, it is accounted for by nonparametric techniques. Another test
allows for the possibility of modeling structural shifts as they are observed. The KPSS test

checks the null hypothesis of stationarity against an alternative of a unit root.

10



8 Augmented Dickey-Fuller (ADF) Test

8.1 Background

ADF tests are based on models of the form

p—1

Ay = dye—1 + Z G Ay + . (2)

i=1

In this model the pair of hypotheses
Hy:¢9=0 versus H;:¢<0

is tested based on the t-statistic of the coefficient ¢ from an OLS estimation of (2) (Fuller
(1976), Dickey and Fuller (1979)). Hy is rejected if the t-statistic is smaller than the relevant
critical value. If ¢ = 0 (that is, under Hy) the series y; has a unit root and is nonstationary,
whereas it is regarded as stationary if the null hypothesis is rejected.

The test statistic has a nonstandard limiting distribution. Critical values have been obtained
by simulation and they are available, for instance, in Fuller (1976) and Davidson and MacK-
innon (1993). The limiting distribution depends on the deterministic terms which have to be
included. Therefore, different critical values are used when a constant or linear trend term
is added in (2). Also seasonal dummies may be included.

In these tests a decision on the AR order or, equivalently, on the number of lagged differences
of y; has to be made. This choice may be based on the model selection criteria or a sequential
testing procedure may be used which eliminates insignificant coefficients sequentially starting

from some high order model.

8.2 Specification in JMulTi
Input

selection of variables one endogenous variable may be selected, exogenous or user defined

deterministic variables are ignored

nonzero mean constant added to regression

time trend constant and trend term added to regression

seasonal dummies seasonal dummies and constant added to regression

actual number of lags the number of lagged differences Ay;_1, ..., Ay,_, in the regression

11



|£DF Test =]

Avgmerted Dickey Fuller Test-

#%% Mon, 1 Mar 2004 10:53:15 ##% - Residual Analysis I
ADF Test for zeries: cons_log dl

sample range: [1951 Q1, 1982 W Monzero mean

lagged differences: 2 W

intercept, no time trend

asymptotic critical walues [~ Seasonal duriries

reference: Dawvidson, R. and MacKinnon, J.

"Estimation and Inference in Econometrics™ |2 Actust number of fags

Oxford University Press, London IF e nuirber of lags
1% 5% 10%

-53.43 -Z.86 -2.57

walue of test statistic: -3.1273 )|

regression results:

wvariable coefficient t-statistic
®x(-1) -0, 5330 -3.12%3
dx(-1) -0, 5750 -3.8326
i -2) -0.3164 -3.0261

Figure 6: Specification of ADF Test

max number of lags the number of lagged differences taken into account for the com-
putation of the information criteria, max lag does not affect the sample period for the test

regression, see also Sec. 14
residual analysis see Sec. 13

Output

value of test statistic the t-statistic of ¢
dx(-i) stands for Ay,

sdummy (i) the ith seasonal dummy

RSS residual sum of squares Zle u?

information criteria the optimal number of lagged differences for the respective criteria

are presented, see Sec. 14

residual analysis see Sec. 13
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9 Schmidt-Phillips Test

9.1 Background

Schmidt and Phillips (1992) have proposed another variant of tests for the null hypothesis
of a unit root when a deterministic linear trend is present. They suggest to estimate the
deterministic term in a first step under the unit root hypothesis. Then the series is adjusted
for the deterministic terms and a unit root test is applied to the adjusted series. Assuming
that a deterministic linear trend term is present, the adjusted series is &; = y; — fig — fi1t.

In order to allow for more general DGPs than finite order AR processes, Schmidt and Phillips

(1992) propose to base the test on a regression
Ai’t = QZSJNJt + €,

where an adjustment factor is used in setting up the test statistic to account for the de-
pendence structure of the error term e;. For the present case, Schmidt and Phillips (1992)

suggest the following two test statistics:

Z(p) = Td52% )52 and  Z(r) = 22t

Oe

Here 62 = T-' Y., & is the variance estimator based on the OLS residuals of the model

Yy = 19 + 11t + pyr—1 + e, and

1 lq 1T
~92 ~2 ~ ~
Uoozfzet+2zwj (T 4 Gtet_]’>
t=1 j=1 t=j+1
is a nonparametric estimator of the so-called long-run variance of e; with w; being a Bartlett
window, w; = 1 — ZJ? The asymptotic null distributions of these test statistics are different
q

from those of the ADF statistics. Critical values for these tests are tabulated in Schmidt

and Phillips (1992).

9.2 Specification in JMulTi

selection of variables one endogenous variable may be selected, exogenous or user defined

deterministic variables are ignored

statistics One may choose between the two available statistics and adjust the number of
lags, [,, for the computation of the so-called long-run variance. One possible suggestion is
to use I, = q(T/100)"/* with ¢ = 4 or q = 12.

13



Select Testing Procedure -

Schmict Philips Test =|

Schrmict Phillips Test-

#%% Mon, 1 Mar 2004 10:54:53 ##w *' ZiRhoy statistic
Jchmidt-Phillips test for series: cons_log dl
sample range: [1960 Qz, 1982 Q4], T = 91§ Z(Tau) statistic

nuamber of lags: 2
reference: Schmide, P. and Phillips, P. C. E. ciE_ Mutmbet of lags:
"LM testz for a unit root in the presence of de
Oxford Bulletin of Economics and 3tatistics, wc
critical walues (T=2000, Zirho) =statistic):
1% 5% 10%
-25.2 -15.1 -15.0
value of test statistic: -112.5732

Figure 7: Specification of the Schmidt-Phillips Test

14



10 KPSS Test

10.1 Background
The integration properties of a series y; may also be investigated by testing
Ho:y, ~ 1(0) against Hp:y ~ I(1),

that is, the null hypothesis that the DGP is stationary is tested against a unit root. Kwiatkowski,
Phillips, Schmidt and Shin (1992) have derived a test for this pair of hypotheses. If there is

no linear trend term, they start from a DGP
Yt = Ty + 2,

where z; is a random walk, ; = ;1 + v;, vy ~ 1id(0,02), and z; is a stationary process. In
this framework the foregoing pair of hypotheses is equivalent to the pair Hy : 02 = 0 versus
H, : 02 > 0. Kwiatkowski et al. (1992) propose the following test statistic

T
1 .
KPSS = = > 8762
t=1
where S; = 22:1 w; with @, =y, — § and 62 is an estimator of

T
ol = Jim T 'Var <Zl zt> :
t=

that is, 62, is an estimator of the long-run variance of the process z;. Kwiatkowski et al.
(1992) propose a nonparametric estimator for this quantity based on a Bartlett window with

a lag truncation parameter I, = q(7/100)/*:

T l T

o 1 Z 2 Zq 1 -

O = f Wy + 2 : Wi T ' WiWg—j |
t=1 j=1 t=j5+1

where w; =1 — lq]? Critical values may be found, e.g., in Kwiatkowski et al. (1992). The

null hypothesis of stationarity is rejected for large values of KPSS.
If a deterministic trend is suspected, the point of departure is a DGP
Y = pat + 2 + 2,
and the w; are residuals from a regression
Yi = po + pt + w;.

With these quantities the test statistic is computed in the same way as before. Its limiting
distribution under Hj is different from the case without trend term, however. Critical values

for the case with trend are available from Kwiatkowski et al. (1992).

15



Select Testing Procedure =

KPS Test

=

HPSS Test-

10%

*#%% Mon, 1 Mar 2004 10:54:12 #%%
EP35 test for series: cons_log dl O et StatiGhay
sanple range:
mmber of lags: a !2_ Mutrber of lags
KP353 test based on vitl=ate(t] [(lewvel stationar

asymptotic critical walues:

¥ Level stationarity

[1960 0z, 1982 Q4], T =

1%

0.347 0.463 0.739

value of test statistic: 0.3930

reference: reprinted from JOURENAL OF ECONOMETEI
Wol 54, No 1,
"Testing the null hypothesis of stationarity ..
with permission from Elsevier Science

1992, pp 159-175, Ewiatkowski et

Figure 8: Specification of the KPSS Test

10.2 Specification in JMulTi

selection of variables

one endogenous variable may be selected, exogenous or user defined

deterministic variables are ignored

statistics One may choose between the two possible statistics and adjust the number of

lags for the computation of the so-called long-run variance. Suitable choices of the lag length
I, may be ly &~ 4(T/100)"* or l;, ~ 12(T/100)Y/4.

16



11 Testing for Seasonal Unit Roots

11.1 Background

Tests have been proposed by Hylleberg, Engle, Granger and Yoo (1990) to check for seasonal

unit roots in quarterly time series. They are based on the model

P
Agyy = TM214-1 + TaZop1 + 32341 + Ta23 -0 + Z a;A4yt—j + Uy, (3)

j=1
where z;; = (1 4+ L+ L? + L)y, 200 = —(1 — L+ L? — L)y, and 23 = —(1 — L)y,

with L being the lag operator. The null hypotheses Hy : my = 0, Hy : m3 = 0 and Hj :
m3 = my = 0 correspond to tests for regular, semiannual and annual unit roots, respectively.
These hypotheses can be tested by estimating the model (3) by OLS and considering the
relevant ‘t-" and ‘F-tests’. These tests are known as HEGY tests. Franses and Hobijn (1997)
provide suitable critical values which are used in JMulTi . ‘F-tests’ may also be used for
the joint null hypothesis that m,, m3 and w4 are all zero and that all four n’s are jointly zero
(m1 = mg = m3 = my = 0). The asymptotic distributions of the test statistics under the
respective null hypotheses depend on the deterministic terms in the model.

The number of lagged seasonal differences Ay,_; has to be chosen before the HEGY tests
can be performed. This may again be done by using model selection criteria or parameter
significance tests.

For monthly series the corresponding tests for seasonal unit roots were discussed by Franses
(1990) based on the model

Aoy = TMi214-1 + TMaZop—1 + M3234-1 + MaZ34-2
+T524,0-1 + Te2a,0—2 + T725¢0-1 + T825¢—2
+m926t—1 + M10%6,6—2 + T1127,6—1 + T1227,4—2
+ 0 o Ay + uy,

where
z10=014+ L)1+ L)1+ L*+ L¥)y,
20 =—(1= L)1+ L*)(1+ L* + L%y,
23y =—(1— LA (1+ L'+ L)y,
zpp = —(1— LY —V3L + L) (1 + L* + L)y,
zp = —(1 = LY(1 + V3L + L¥)(1 + L* + L¥)y,
—(1-LYH(A - L*+ LYHY(1 — L+ LYy
—(1-LYH(A - L*+ LY (1 + L+ L*)y,.

26t =
27t
The process y; has a regular (zero frequency) unit root if 73 = 0 and it has seasonal unit
roots if any one of the other m; (i = 2,...,12) is zero. For the conjugate complex roots,
m = my = 0 (i = 3,5,7,9,11) is required. The corresponding statistical hypotheses can

again be checked by t- and F-statistics, critical values for which are given by Franses and

17



Hobijn (1997). If all the m; (i = 1,...,12) are zero, then a stationary model for the monthly
seasonal differences of the series is suitable. As in the case of quarterly series it is also

possible to include deterministic terms in the model (4).

11.2 Specification in JMulTi

||HEGY Test |v|

Y op
i Y onp
Hegy Test= || o 803
T T T R = - : D i
: i Lzl Residual Analysiz |
regression results: D igd4gs
= Y m
wvariable coefficient t-statistic |1,N0nzero FEEH Y g
D Time trend
const 0.0051 1.7764 t—
pil -0.0188 -2.0012 DSeasonaI dummies
piz -0.7379 -5.4861 e
pi3 —0.4751 —4. 5709 h IAdumnumberofbgs
pid -0.4377 -4. 2303 pD |Maxnumberofbgs
AR1 -0.013%9 -0.0936 T
ARE 0.004% 0. 0459
sigma: 0.0053

critical walues

reference: P.H. Franses and B. Hobijn (1997)

Mmbers from all the tables in

"Critical walues for unit root tCests in seasonal time series™;
Journal of applied Statistics 24: 25-46

Taylor & Francis Ltd. ,wm. tandf. co.uk/journals

statistic 1% 5% 10%

tipil) -3.42 -2.85 -2.55

tipiz) -2.53 -1.93 -1.61

Fi4 4,83 3.08 2.37

Fz34d 4.01 Z.768 Z.20 =5
Flazd 4, 52 3.36 Z.83

walues of test statistics:

tipill: -z.001z
tipid): -5.4861
F34: 23.7374
F234: 27.2398
F1234: 22.7832
Figure 9: Specification of HEGY Test
Input

selection of variables One endogenous variable may be selected, exogenous or user de-
fined deterministic variables are ignored. The selected time series must have periodicity 4
or 12. For other periodicities the test is not implemented in JMulTi .

nonzero mean constant added to regression

time trend constant and trend term added to regression

seasonal dummies seasonal dummies and constant added to regression

actual number of lags the number of lagged differences in the regression

18



max number of lags the number of lagged differences taken into account for the compu-
tation of the information criteria, max lag does not affect the sample for the test regression,
see also Sec. 14

residual analysis see Sec. 13

Output

pi 1,...,periodicity the results from the test regression (3) or (4)

AR 1,...,Jags the coefficients of Ayy;—; (A12yi—;)

sdummy (i) the ith seasonal dummy

sigma the standard deviation /u/'a/(T — K'), with K being the number of regressors

test statistics the respective F- and t-statistics along with the critical values, the pi(= )

coefficients tested are indicated with an index:
o F1112 tests Hy : pill=pil2=0
o [2-12 tests Hy : pi2=pid=...=pil2=0

o t(pil) tests Hy : pil=0, etc.

information criteria the optimal number of lagged differences found by the respective

criterion are presented, see Sec. 14

residual analysis see Sec. 13
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12 Tests for Processes with Level Shifts

12.1 Background

If there is a shift in the level of the DGP, it should be taken into account in testing for a
unit root because the ADF test may be distorted if the shift is simply ignored. Therefore a
shift function, which is here denoted by f;(6)'7, may be added to the deterministic term gy
of the DGP. Hence, a model

Yr = po + pat + f1(0) v + x4, (5)

is considered, where 6 and ~ are unknown parameters or parameter vectors and the errors
x; are generated by an AR(p) process with possible unit root.
JMulTi offers the following three possible shift functions:

1. A simple shift dummy variable with shift date Tg,

0, t<T
ft(l) =dy = o
1 t>1Tp

Y

The function does not involve any extra parameter 6. In the shift term ft(l)fy, the

parameter 7y is a scalar. Differencing this shift function leads to an impulse dummy.

2. The second shift function is based on the exponential distribution function which allows

for a nonlinear gradual shift to a new level starting at time T,

(2) 0, t<Tp
fi7(0) = :
1 —exp{—0(t—Tp+1)}, t>T5

In the shift term ft(Q) (0)7, both 6 and ~ are scalar parameters. The first one is confined

to the positive real line (6 > 0), whereas the second one may assume any value.

3. The third function can be viewed as a rational function in the lag operator applied to

a shift dummy dy,

(3) o dl,t . dl,t—l '
Ji(0) = [1—0L'1—¢9L} '

Here the actual shift term is [y;(1 — L)~ + 49(1 — L)' L]dy;, where 0 is a scalar

parameter between 0 and 1 and v = (7; : 72)’ is a two-dimensional parameter vector.

Both ft(Q) (0)v and ft(?’)(@)’ ~ can generate sharp one-time shifts at time Ts for suitable values
of #. Thus they are more general than ft(l)v.

Saikkonen and Liitkepohl (2002) and Lanne, Liitkepohl and Saikkonen (2002) propose unit
root tests for the model (5) which are based on estimating the deterministic term first

by a generalized least squares (GLS) procedure under the unit root null hypothesis and

20



subtracting it from the original series. Then an ADF type test is performed on the adjusted
series which also includes terms to correct for estimation errors in the parameters of the
deterministic part. As in the case of the ADF statistic, the asymptotic null distribution is
nonstandard. Critical values are tabulated in Lanne et al. (2002). Seasonal dummies may
be included in addition to a constant or a linear trend term.

The user of the test has to decide on the AR order and the shift date Tg. If the latter quantity
is known, the desired shift function may be included and the AR order may be chosen in the
usual way with the help of order selection criteria, sequential tests and model checking tools.
If the break date is unknown, Lanne, Liitkepohl and Saikkonen (2001) recommend to choose
a reasonably large AR order in a first step and then pick the break date which minimizes the
GLS objective function used to estimate the parameters of the deterministic part. In this
step, JMulTi uses a shift dummy as shift function. The program offers graphs which show
the impact of changes in the break date and variations in the parameter . Once a possible
break date is fixed, a more detailed analysis of the AR order may be useful to improve the

power of the test.

12.2 Specification in JMulTi

Select Testing Procedure=
|UR weith Structural Break j
IUnit oot Test with Structural Ereak -
**% Mon, 1 Mar 2004 10:56:35 **+% 2 Resicual Analysiz |
Break date search for series: cons_log dl " Imputse dummy
sanple range: [1961 Q1, 1
searched range: [1361 03, 1 {+" Shift churnrmy
mamher of lags (lst diff): 2 P Expanertial shift
suggested break date: 1973 Q2
" Ratiohial shitt
%% Mon, 1 Mar 2004 10:56:38 &+« Break date
UE. Test with structural bhreak for series: FEF'_S_GZ_ Search == |
sanple range: [1961 01, 1_
number of lags (lst diff): 2 [ Time trend
walue of test statistic: -2.0a650 [ seazonal-dummics
used break date: 1973 02
shiftfunction: shift dumms |2_ Actual number of Bgs
critical walues (Lanne et al. Z00L1): |1-III_ Mlax number of lags

Figure 10: UR Test with Level Shift
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R weith Structural Break bt
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FEE Jat, 28 May 2005 20:16:45 *## Search forthe break date
Break date =zearch for series: m inthe specified range.
ganple range: [1972 04, 1998 Q4 Theshift function used forthe
searched range: [1973 02, 1982 Q4 Festshieenciis B8 cimmy
numher of lags (lst diff): 2 BRI RLAN S S aac
suggested break date: 1978 N4
Search range for break
[1973 @2, 1982 qa ]
Detault Range (max)
Search Break Date
P M | [ » == Back to Test

Figure 11: automatic break search

Input

selection of variables one endogenous variable may be selected, exogenous or user de-

fined deterministic variables are ignored, a constant is always automatically added to the

regression.
shift function select the desired shift function, an impulse dummy can be used with 1st
differences, for the exponential and rational shift function, the parameter theta(= 6) is

estimated by a grid search

break date the desired break date to be used in the regression, click on search to use an

automatic procedure to find the optimal break date
time trend constant and trend term added to regression
seasonal dummies seasonal dummies and constant added to regression

actual number of lags the number of lagged differences in the regression
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max number of lags the number of lagged differences taken into account for the com-
putation of the information criteria, max lag does not affect the sample period for the test
regression, see also Sec. 14

residual analysis see Sec. 13

graphical analysis shows plots of the shift function, the original series with and without

deterministic terms and the grid search for theta

Output

value of test statistic the t-statistic of the relevant parameter in the ADF type model

setup proposed by Lanne et al. (2002)
theta in case of exponential or rational shift function the estimated slope parameter

dx(-i) stands for Ay, ;

d(const) stands for Z; = [1,0,...,0]', regressor for initial estimation of the constant
d(trend) stands for Zo = [1,1,...,1]’, regressor for initial estimation of the trend
d(shiftfkt) stands for Zs = [f1(0) : Afa(0) : -+ : Afr(6)], regressor for initial estimation

of the shift parameter ~
d(SD) stands for the seasonal dummies which are included in the same way as Z;
RSS residual sum of squares Zle u?

information criteria the optimal number of lagged differences for the respective criteria

are presented, see Sec. 14

residual analysis see Sec. 13
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13 Residual Analysis

13.1 Specification in JMulTi

W ARCH-LMtest 2 Murber of lags
v Jargue-Bera test
W Plot residuals [~ Standardize residualz

W Plot autocorrelation |3Ei Lags toinclude

Ok | Cancel |

Figure 12: Specification of Residual Analysis

The configuration panel allows to specify a range of diagnostic tests for the residual analysis of
the estimated model. Select the appropriate checkboxes and adjust the available parameters
according to your needs. The residual analysis is then carried out after the respective model

is estimated.

13.2 Background

In the following the residual series are denoted by u; (t = 1,...,T) and the standardized
residuals are obtained by dividing by the standard deviation, that is, the standardized resid-

uals are @§ = (i, — @)/5,, where 52 = TS (4, — )% with 4 = T~' 2] 4.
Portmanteau Test
The pair of hypotheses

Hy:py1=--=pur=0 vs. Hy:p,;#0foratleast onei=1,... h,

is tested. Here p,; = Corr(u;,u;—;) denotes the AC coefficients of the residual series. Two

test statistics, @), and LBy, are given in JMulTi together with the corresponding p-values
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(see Ljung and Box (1978)):

h h
1
— A2 _ 72 ~2
Qn = TZ py; and LB, =T Z T i
Jj=1 Jj=1
where p,; = T! ZtT:j L ugug . If the 4, are residuals from an estimated ARMA(p, q)
model, the test statistics have an approximate asymptotic x?(h — p — ¢) distribution if the

null hypothesis holds.

ARCH-LM Test

In JMulTi the test for neglected conditional heteroskedasticity (ARCH) is based on fitting
an ARCH(q) model to the estimation residuals,

0 = Bo+ friir |+ -+ ﬁqdf_q + errory, (6)
and checking the null hypothesis

Hy:51=--=8,=0 vs. Hy:p5#0o0r ... or 3, #0.

Under normality assumptions the LM test statistic is obtained from the coefficient of deter-

mination, R?, of the regression (6):

It has an asymptotic x?(q) distribution if the null hypothesis of no conditional heteroskedas-
ticity holds (Engle (1982)).

Jarque-Bera Test

Lomnicki (1961) and Jarque and Bera (1987) have proposed a test for nonnormality based
on the skewness and kurtosis of a distribution. The test checks the pair of hypotheses

Hy:E(uf)? =0and E(uj)* =3 wvs. Hy:E(u)®#0or E(uf)* # 3.

The test statistic is

T 2

Ty (@)

t=1

T
JB =~
6

T 2
T‘lZ(ﬂif—B] |
t=1

and has an asymptotic x?(2) distribution if the null hypothesis is correct (see Jarque and

LT
24

Bera (1987)). In JMulTi also skewness and kurtosis of the standardized residuals are given.

Plot Residuals

Absolute or standardized residuals are plotted.
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Plot Autocorrelation

In JMulTi residual autocorrelations (ACS) pun = Jun/Juo are obtained from

T
~ 1 ~ ~ ~
=7 > (= @)y — )
t=h+1

where & = T~ Y[ @i, is the sample mean.
The partial autocorrelation (PAC) between u; and wu;_, is the conditional autocorrelation
given u;_1,...,u_pr1- The corresponding sample quantity a; is obtained as the OLS esti-

mator of the coefficient oy, in an autoregressive model
Uy = v+ a1 + -+ aply_p, + errory.

In JMulTi , OLS estimates are obtained for each h with sample size T' — h.

26



14 Information Criteria

The following formulas for the information criteria are used:

AIC(n) = log2(n) + %n (Akaike (1973, 1974)) ,

- 2loglog T
HQ(n) = loga2(n) + %n (Hannan and Quinn (1979)),
— logT .
SC(n) =logao;(n) + n (Schwarz (1978) and Rissanen (1978)),
and Tt
FPE(n) = - Z #2(n)  (Akaike (1969)),

where 2(n) is estimated by @'4/T, n is the number of lagged differences included and n* is
the total number of parameters in the model when n lagged differences are included.

The computation of the 4, is always done with a regression model that is estimated with OLS.
All models with 0 to n lagged differences are estimated. The lag length which minimizes the
respective information criterion is presented. The sample length is the same for all different
lag lengths and is determined by the maximum order. In other words, the number of values

set aside as presample values is determined by the maximum lag order.
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15 Cointegration Tests
The cointegration tests in JMulTi are based on the following general model
Yy = Dy + 1y

where 1; is a K-dimensional vector of observable variables, D; is a deterministic term, e.g.,
Dy = po + pit may be a linear trend term, and z; is a VAR(p) process with vector error

correction model (VECM) representation

p—1
Axy =1la,_q + Z LAy +

j=1

Here u; is a vector white noise process with u; ~ (0,%,). The rank of IT is the cointegrating

rank of x; and hence of y,. Therefore the cointegration tests check the pair of hypotheses
Hy(ro) : tk(IT) = r¢  versus Hi(rg) : rk(II) > ro, ro=0,....,. K —1 (7)

Two types of tests are available in JMulTi , Johansen trace tests and tests proposed by
Saikkonen & Liitkepohl. For both types of tests the VAR order p has to be specified. Model

selection criteria offer help in the decision on the VAR order (see Sec. 18).

28



16 Johansen Trace Tests

16.1 Background

Johansen (1988, 1991, 1992, 1994, 1995) in a series of publications has proposed tests
which are likelihood ratio (LR) tests if y; is normally distributed and Gaussian pseudo LR
tests otherwise. In the literature these tests are known as trace tests because of the special
form of the test statistic. The distributions of the test statistics under their respective null
hypotheses depend on the deterministic terms. In JMulTi three basic modelling options are
available where in each case seasonal dummy variables and impulse dummies may be added.
Furthermore, in case 1 and 2 the user may specify up to two structural breaks which appear

either in levels only or in trend and levels jointly (only case 2).

Eviews Compatibility Guide

Users with experience in the econometric software package Eviews should note that in JMulTi
only three relevant test cases are implemented, which are described in the following sections.
The mapping between the Eviews and JMulTi model specification options is the following
(Eviews - JMulTi):

e no intercept in CE or VAR - not implemented

intercept in CE, no intercept in VAR - constant (case 1)

intercept in CE and test VAR - orthogonal trend (case 3)

intercept and trend in CE, no trend in VAR - constant and trend (case 2)

intercept and trend in CE, linear trend in VAR - not implemented

Case 1: Restricted mean term and no linear trend

In this case the deterministic term has the form
D, = po(+seasonal dummies)
and the DGP of the y, can be written as

p—1
Yt—1 n Z FjAyt_j +

J=1

Ay, =1T"

where IT* = [IT : 1] is (K x (K + 1)) with vy = —IIug and the seasonals are neglected. The
test statistic is obtained by reduced rank regression applied to this model with rk(IT*) = rq
(see Johansen (1995)).
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Case 2: Constant and linear trend

In this case the deterministic term has the form
Dy = o + pit(+seasonal dummies)

and the DGP of the y, can be written as

p—1
Ay, = v+ 10 tyt__ll + Z LAY+ w
j=1

where ITt = o[ : 9] is a (K X (K + 1)) matrix of rank ry with n = —’u; and the seasonals
are neglected. The test is based on this model (see Johansen (1994, 1995)).

Case 3: Trend orthogonal to cointegration relations

In this case the deterministic term again has the form
D; = 1o + put(+seasonal dummies)

It is assumed, however, that there is a linear trend term in the variables but not in the
cointegration relations (it is orthogonal to the cointegration relations) so that II(y;—1 — po —
pi(t — 1)) = (y;—1 — po). In this case the model for y; can be written as

p—1

Ay =v + 1y, 1 + Z LAy +uy

j=1
(see Johansen (1995)). In this setup it is not meaningful to test Hy : rk(IT) = K — 1 versus
H, :1k(Il) = K, as argued by Saikkonen and Liitkepohl (2000a).

16.2 Specification in JMulTi
Input

selecting variables a number endogenous and deterministic variables can freely be se-
lected for this test, but deterministic variables must not be a shift or a trend shift because
this should be specified via the Set Breaks dialog

structural breaks For a discussion of the test specification in case of structural breaks,
see Johansen, Mosconi and Nielsen (2000). Trenkler (2004) discusses the case where a trend
model is specified but only a break in levels occurs.

The Set Breaks dialog can be used to specify up to two structural breaks either in levels only
or in levels and trend jointly. In case 1 only level breaks are used, even if trend breaks are
selected. In case 2 the breaks might occur in trend and levels jointly or in levels only. In case

3 all structural breaks are ignored because for this critical values are not easily obtained.
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| Execute Test |

Figure 13: Specification of Johansen Trace Test

If structural breaks are specified then at the beginning of each subsample p dummies are
included in the model to condition on these observations. This is done automatically by the

program. The shift dummies enter the model in the following way:

e case 1, break in levels - level shift(s) restricted to EC term
e case 2, break in levels only - level shift(s) restricted to EC term,

e case 2, break in levels and trend jointly - trend shift(s) restricted to EC term and level

shift(s) unrestricted in model
nonzero mean this corresponds to case 1
constant and trend this corresponds to case 2
orthogonal trend this corresponds to case 3

seasonal dummies centered seasonal dummies are added to the model, centered means
that SDy; + ... + SDp; = 0 for each t, where P is the periodicity of the data

actual number of lags the VAR order p of the levels VAR form

max number of lags maximum VAR order considered by the model selection criteria,

see Sec. 18
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Figure 14: Specification of Level and Trend Breaks

set restricted to long run If additional impulse dummies terms are included they appear

in a list. By selecting them one can create a model of the form

Ay, =11
Y Dl,_,

p—1
+ Z FjAyt_j + Ut
j=1
with DI; being the vector of deterministic terms restricted to the EC term.

Output

r0 the tested rank of the matrix II under Hy, r0 = 0, ..., K — 1, in case of an orthogonal
trend 70 =0, ..., K — 2, see Sec. 16.1

critical values and p-values The critical values as well as the p-values of all Johansen
trace tests are obtained by computing the respective response surface according to Doornik
(1998) if there are no breaks, or according to Johansen et al. (2000) if there are up to 2
breaks. In case 2 with a break only in the levels the response surface also follows the design
of Johansen et al. (2000). However, the simulation of the limiting distribution is based on a

representation as in Theorem 3.1 for the case of no trend breaks.

optimal number of lags the optimal VAR order determined by the information criteria
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17 Saikkonen & Liitkepohl Tests

17.1 Background

Saikkonen and Liitkepohl (2000a, b,c) have proposed tests for the pair of hypotheses (7)
which proceed by estimating the deterministic term D, first, subtracting it from the obser-
vations and applying a Johansen type test to the adjusted series. In other words, the test is
based on a reduced rank regression of the system

p—1

Az =iy + Y TAZ_ +

=1

where T; = y; — Dt and l~7t is the estimated deterministic term. The parameters of the deter-
ministic term are estimated by the GLS procedure proposed by Saikkonen and Liitkepohl.
The critical values depend on the kind of deterministic term included. Possible options are
a constant, a linear trend term, a linear trend orthogonal to the cointeration relations and
seasonal dummy variables. In other words, all the options available for the Johansen trace
tests are also available here. In addition, the critical values remain valid if a shift dummy

variable is included. However, trend breaks are ignored by this test.

17.2 Specification in JMulTi

Select Testing Procedure =

Saikkonen & Litkepohl Test - |

Saikkonen & Litkepohl Test-

#+% Mon, 1 Mar 2004 10:57:21 %% 2] & Constart

S&lL Test for: cons_log_dl ™ Constart and teehd
1 : 1960 Q4, 1982

?a.mp it [ 2 ¢ ™ Orthogonal trend

included lags (lewels): 2

dimension of the process: 1 I2 Mumber of lags

intercept included '

response surface computed: |1':' Mz hummber of lags

S L L — g 4 I Seazonal dummies

1] 20,23 0. 0000 2.98 4,13 £

OPTIMAL ENDOGENOUS LAGS FROM INFORMATION

sample range: [196Z 04, 1982 [

Figure 15: Specification of S&L Test
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Input

selecting variables a number endogenous and deterministic variables can freely be se-

lected for this test, but deterministic variables that are trend shifts will be ignored
nonzero mean this corresponds to case 1, see Sec. 16.1

constant and trend this corresponds to case 2, see Sec. 16.1

orthogonal trend this corresponds to case 3, see Sec. 16.1

seasonal dummies centered seasonal dummies are added to the model, centered means
that SDy; + ... + SDp; = 0 for each t, where P is the periodicity of the data

actual number of lags the VAR order p of the levels VAR form

max number of lags maximum VAR order considered by the model selection criteria,

see Sec. 18

Output

r0 the tested rank of the matrix II under Hy, 70 = 0, ..., K — 1, in case of an orthogonal
trend 70 =0, ..., K — 2, see Sec. 16.1

critical values and p-values response surface generated according to Trenkler (2004)

optimal number of lags optimal VAR order determined by the information criteria
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18 Information Criteria for Vector Processes
The information criteria are computed for VAR models in the levels of the variables,
Ye =Dy + Aryp + -+ AnYpn +

using LS estimation. Here D, denotes again deterministic terms which are also estimated.

The following formulas for the information criteria are used:
= 2
AIC(n) = logdet(3,(n)) + TnK2 (Akaike (1973, 1974)) ,

= 2loglogT
HQ(n) = logdet(X,(n)) + %

= log T
SC(n) = logdet(X,(n)) + O? nk? (Schwarz (1978) and Rissanen (1978)),

nk? (Hannan and Quinn (1979), Quinn (1980)),

and
T+ n*

T —n*

FPE(n) = ( )K det(Z.(n))  (Akaike (1971)),

where $,(n) is estimated by 7! ST ddgiy, n* is the total number of parameters in each
equation of the model when n is the VAR order, also counting the deterministic terms. The
sample length is the same for all different lag lengths and is determined by the maximum
order. In other words, the number of values set aside as presample values is determined by the
maximum lag order considered. The lag length which minimizes the respective information
criterion is presented in the output of JMulTi . For more information on the model selection
criteria see Liitkepohl (1991).
In JMulTi the maximum number of lags is automatically reduced by 1 if the regressor matrix
has not full column rank after truncating the presample values. This procedure is repeated
until a maximum lag is found for which the regression can be executed. If such an adjustment

was done, the line maz lag adjusted is added to the output.

35



References

Akaike, H. (1969). Fitting autoregressive models for prediction, Annals of the Institute of
Statistical Mathematics 21: 243-247.

Akaike, H. (1971). Autoregressive model fitting for control, Annals of the Institute of Sta-
tistical Mathematics 23: 163-180.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle,
in B. Petrov and F. Cséki (eds), 2nd International Symposium on Information Theory,
Académiai Kiadé, Budapest, pp. 267-281.

Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on
Automatic Control AC-19: 716-723.

Bartlett, M. S. (1950). Periodogram analysis and continuous spectra, Biometrika 37: 1-16.

Davidson, R. and MacKinnon, J. (1993). Estimation and Inference in Econometrics, Oxford

University Press, London.

Dickey, D. A. and Fuller, W. A. (1979). Estimators for autoregressive time series with a unit
root, Journal of the American Statistical Association T4: 427-431.

Doornik, J. A. (1998). Approximations to the asymptotic distributions of cointegration tests,
Journal of Economic Surveys 12: 573-593.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity, with estimates of the

variance of United Kingdoms inflations, Fconometrica 50: 987-1007.

Franses, P. H. (1990). Testing for seasonal unit roots in monthly data, Econometric Institute

Report 9032A, Erasmus University Rotterdam.

Franses, P. H. and Hobijn, B. (1997). Critical values for unit root tests in seasonal time
series, Journal of Applied Statistics 24: 25-46.

Fuller, W. A. (1976). Introduction to Statistical Time Series, John Wiley & Sons, New York.

Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression,
Journal of the Royal Statistical Society B41: 190-195.

Hylleberg, S., Engle, R. F., Granger, C. W. J. and Yoo, B. S. (1990). Seasonal integration

and cointegration, Journal of Econometrics 44: 215-238.

Jarque, C. M. and Bera, A. K. (1987). A test for normality of observations and regression
residuals, International Statistical Review 55: 163-172.

36



Johansen, S. (1988). Statistical analysis of cointegration vectors, Journal of Economic Dy-
namics and Control 12: 231-254.

Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian

vector autoregressive models, Econometrica 59: 1551-1581.

Johansen, S. (1992). Determination of cointegration rank in the presence of a linear trend,
Ozxford Bulletin of Economics and Statistics 54: 383-397.

Johansen, S. (1994). The role of the constant and linear terms in cointegration analysis of

nonstationary time series, Econometric Reviews 13: 205-231.

Johansen, S. (1995). Likelihood-based Inference in Cointegrated Vector Autoregressive Models,
Oxford University Press, Oxford.

Johansen, S., Mosconi, R. and Nielsen, B. (2000). Cointegration analysis in the presence of

structural breaks in the deterministic trend, Econometrics Journal 3: 216-249.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y. (1992). Testing the null of
stationarity against the alternative of a unit root: How sure are we that the economic

time series have a unit root?, Journal of Econometrics 54: 159-178.

Lanne, M., Liitkepohl, H. and Saikkonen, P. (2001). Test procedures for unit roots in time

series with level shifts at unknown time, Discussion paper, Humboldt-Universitat Berlin.

Lanne, M., Liitkepohl, H. and Saikkonen, P. (2002). Comparison of unit root tests for time

series with level shifts, Journal of Time Series Analysis .

Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time-series models,
Biometrika 65: 297-303.

Lomnicki, Z. A. (1961). Tests for departure from normality in the case of linear stochastic
processes, Metrika 4: 37-62.

Liitkepohl, H. (1991). Introduction to Multiple Time Series Analysis, Springer Verlag, Berlin.

Quinn, B. G. (1980). Order determination for a multivariate autoregression, Journal of the
Royal Statistical Society B42: 182-185.

Rissanen, J. (1978). Modeling by shortest data description, Automatica 14: 465-471.

Saikkonen, P. and Liitkepohl, H. (2000a). Testing for the cointegrating rank of a VAR
process with an intercept, Econometric Theory 16: 373—406.

Saikkonen, P. and Liitkepohl, H. (2000b). Testing for the cointegrating rank of a VAR
process with structural shifts, Journal of Business €& Economic Statistics 18: 451-464.

37



Saikkonen, P. and Liitkepohl, H. (2000c). Trend adjustment prior to testing for the cointe-

grating rank of a vector autoregressive process, Journal of Time Series Analysis 21: 435—
456.

Saikkonen, P. and Liitkepohl, H. (2002). Testing for a unit root in a time series with a level
shift at unknown time, Econometric Theory 18: 313-348.

Schmidt, P. and Phillips, P. C. B. (1992). LM tests for a unit root in the presence of
deterministic trends, Oxford Bulletin of Economics and Statistics 54: 257-287.

Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics 6: 461-464.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman &
Hall, London.

Trenkler, C. (2004). Determining p-values for systems cointegration tests with a prior ad-

justment for deterministic terms, mimeo, Humboldt-Universitat zu Berlin.

38



