
Nonparametric Time Series Analysis in JMulTi
March 29, 2005

Rolf Tschernig

Univariate nonparametric time series models are a valuable tool for modelling the conditional

mean and conditional volatility function of a stochastic process. In JMulTi one can specify,

estimate and analyze nonparametric time series models and use them for forecasting.

The following chapter briefly describes all nonparametric time series models that are available

in JMulTi and how to use JMulTi to fit their conditional mean and conditional volatility

functions. The set of models also includes several seasonal models that differ in their degree

of seasonal flexibility.

This chapter consists of two main parts. The first part describes the equations underlying the

computations for the various models and modelling stages where each of the Sections 3 to 6

are devoted to a specific nonparametric model. In the second part the user is guided through

the nonparametric modelling process using the various JMulTi panels in the nonparametric

module. Each of the Sections 8 to 12 is devoted to one panel.

For a discussion of underlying assumptions and the derivation of relevant properties one may

e.g. see the introduction to nonparametric time series modelling in Chapter 7 of Tschernig

(2004).

1 Available Models

The nonparametric modelling module in JMulTi covers exclusevily models for univariate

stochastic processes {yt}t≥1. In addition to the basic nonparametric heteroskecastic nonlin-

ear autoregressive (NAR) model there are three seasonal extensions: the seasonal nonlin-

ear autoregressive (SNAR) model, the seasonal dummy nonlinear autoregressive (SDNAR)

model, and the seasonal shift nonlinear autoregressive (SHNAR) model. A definition of each

model is given in Section 1.1.

During the modelling process and for model evaluation, it can be useful to additionally

employ linear lag selection methods. This can be done in JMulTi for the linear counterparts

of the above mentioned models. These include: the autoregressive (AR) model, the periodic

autoregressive (PAR) model, the seasonal dummy linear autoregressive (SDAR) model and

the seasonal shift linear autoregressive (SHAR) model, see Section 1.2 for their definition.

Before beginning a nonparametric analysis, one should be aware that all nonparametric

methods that are implemented in JMulTi are developed for stochastic processes that are

stationary and show a quick enough decay of stochastic dependence between observations

with an increasing time span. Technically speaking, the stochastic process has to be β-

mixing. Thus, one has to remove deterministic or stochastic trends from a time series
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prior to nonparametric modelling. Appropriate testing methods can be found in the JMulTi

module Initial Analysis .

1.1 Nonlinear Models

Heteroskedastic nonlinear autoregressive (NAR) model Choosing a NAR model, one

assumes that the stochastic process {yt} is generated by the heteroskedastic nonlinear

autoregressive (NAR) model

yt = µ(xt) + σ(xt)ξt (1)

where xt = (yt−i1 , yt−i2 , . . . , yt−im)′ is the vector of all m correct lagged values, i1 < i2 <

· · · < im, and the ξt’s, t = im+1, im+2, . . ., denote a sequence of i.i.d. random variables

with zero mean and unit variance. The functions µ(xt) and σ(xt) denote the conditional

mean and volatility function, respectively. JMulTi also allows the conditional volatility

function σ(·) to have lags different from those of the conditional mean function, see

Section 3.3. Note, however, that asymptotic properties of nonparametric estimation

and lag selection methods for the conditional mean function only have been derived for

the case that the lag vector of σ(·) is a subvector of the lag vector of the conditional

mean function.

In order to represent seasonal processes it is convenient to replace the time index t by

t = s + Sτ where s = 1, 2, . . . , S denotes the season and τ = 0, 1, . . . represents a new time

index.

Seasonal nonlinear autoregressive (SNAR) model Selecting a SNAR model, one as-

sumes that the stochastic process {yt} is generated by the seasonal nonlinear autore-

gressive (SNAR) model given by

ys+τS = µs(xs+τS) + σs(xs+τS)ξs+τS (2)

where xt is as before the vector of all correct lagged values. In contrast to the standard

nonlinear autoregression model (1) the regression functions {µs(·)}S
s=1 are allowed to

vary with the S seasons. This is the most general seasonal process available in JMulTi

and is also a specialization of the PAR model (6).

It has to be stressed that for both the SDNAR and the PAR model the number of

observations available for estimating each function is about TS ≈ T/S. If this is too

small, then one should select a model with restricted seasonality such as the SDNAR

or SHNAR model below. While there is no clear cut minimum for TS, TS = 30 years

of quarterly data are certainly not enough.
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Seasonal dummy nonlinear autoregressive (SDNAR) model Choosing a SDNAR model,

one assumes that the stochastic process is generated by a seasonal dummy nonlinear

autoregressive model (SDNAR model)

ys+τS = µ(xs+τS) + bs + σ(xs+τS)ξs+τS (3)

where the bs, s = 1, . . . , S, denote seasonal parameters. To guarantee identification

one defines b1 = 0. This model is a restricted SNAR model since µs(·) = µ(·) + bs,

s = 1, 2, . . . , S. The seasonal variation of the functions between the s-th and the 1-th

season is restricted to the constant shifts bs. The SDNAR model generalizes the SDAR

model (7).

Seasonal shift nonlinear autoregressive (SHNAR) model If one selects a SHNAR model,

one assumes that the stochastic process {yt} is generated by the seasonal shift nonlinear

autoregressive model (SHNAR) model

ys+τS − δs = µ
(
ys+τS−i1 − δ{s−i1}, . . . , ys+τS−im − δ{s−im}

)
(4)

+σ
(
ys+τS−i1 − δ{s−i1}, . . . , ys+τS−im − δ{s−im}

)
ξs+τS

where δs, s = 1, . . . , S denote seasonal mean shifts and where {a} is defined as

{a} =

{
S if a modulo S = 0,

a modulo S otherwise.

For identifiability one assumes δ1 = 0. This is another way of restricting the seasonal

nonlinear autoregression model (2) since it is assumed that the seasonal process is

additively separable into a seasonal mean shift δs, s = 1, 2, . . . , S, and a nonseasonal

nonlinear autoregression {zt}, i.e. ys+τS = δs + zs+τS.

The SHNAR model is another way of generalizing the SDAR model (7).

1.2 Linear Models

Commonly, linear autoregressive models are stated with all lags included up to order p. Since

for all nonlinear models the lag selection procedures allow to consider a subset of lags, we

state all linear models in a more general way that allows for nonconsecutive lags.

Linear autoregressive models (AR) models Selecting an AR model, one assumes that

the stochastic process {yt} is generated by the linear autoregressive model (AR model)
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yt =
m∑

j=1

αijyt−ij + εt. (5)

Periodic autoregressive (AR) models Selecting a PAR model, one assumes that the

stochastic process {yt} is generated by the periodic AR (PAR) model

ys+τS = bs +
m∑

j=1

αijsys+τS−ij + εs+τS, (6)

see, for example, Lütkepohl (1991, Chapter 12).

Seasonal dummy autoregressive (SDAR) models Selecting a SDAR model, one as-

sumes that the stochastic process {yt} is generated by the seasonal dummy linear

autoregressive model (SDAR model)

ys+τS = bs +
m∑

j=1

αijys+τS−ij + εs+τS. (7)

SHAR Models A SHAR model is just another representation of SDAR model (7) and is

given by

ys+τS − δs =
m∑

j=1

αij

(
ys+τS−ij − δ{s−ij}

)
+ εs+τS (8)

where the constant seasonal mean shifts δ1, ..., δS are obtained up to an additive con-

stant via the system of linear equations bs = δs −
∑p

j=1 αjδ{s−j}, s = 1, 2, . . . , S.

2 The Model Building Steps

2.1 Overview

In general, the (nonparametric) modelling process of a univariate time series consists of the

following steps:

1. Prior Data Transformations

2. Model and Lag Selection
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3. Estimation

4. Model Checking

and potentially

5. Volatility Analysis

6. Forecasting

Except for the first step each step corresponds to one panel in the JMulTi module Non-

parametric Time Series Analysis. The use of each panel will be explained in Sections 8

to 12. For the formulas and algorithms underlying the computations of each modelling step

see Sections 3, 4, 5, and 6 for the NAR, SNAR, SDNAR, and SHNAR model, respectively.

2.2 Prior Data Transformations

Since data transformations are also necessary before fitting standard ARMA models, there

is no specific panel for prior data transformations in this model.

The first step in nonparametric modelling is to transform the time series such that it be-

comes stationary and β-mixing. The latter implies that the stochastic dependence between

observations of different time points decreases fast enough with the distance between obser-

vations. This condition is fulfilled for standard linear processes with geometrically decaying

autocovariance functions and reasonably well behaved error distributions. For details see

e.g. Tschernig and Yang (2000) or Yang and Tschernig (2002) in case of seasonal processes.

These conditions guarantee asymptotically valid results.

Practically, this implies e.g. a logarithmic transformation and/or removing deterministic or

stochastic (seasonal) trends. To check the presence of the latter one can use the panel Unit

Root Tests in the JMulTi module Initial Analysis.

3 NAR Models

In this Section we briefly summarize the underlying theory for the NAR model (1). Sections

8 to 12 describe how to carry out the steps of lag selection, estimation, model checking,

volatility analysis, and forecasting in JMulTi .

3.1 Estimation and Confidence Intervals

In this subsection it is assumed that the relevant lags have already been selected. If the lags

are not yet determined, see Section 3.2.
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3.1.1 Local Linear Estimation

Let K(u) denote a kernel function and

Kh(xt − x) =
m∏

i=1

1

hm
K

(
xti − xi

h

)
,

a product kernel with scalar bandwidth h and with kernel variance σ2
K =

∫
u2K(u)du and

the kernel constant ||K||22 :=
∫

K(u)2du. Define further the matrices

e = (1, 01×m)′, Z(x) =

(
1 · · · 1

xim+1 − x · · · xT − x

)′

,

W (x, h) = diag {Kh(xt − x)/T}T
t=im+1 , y =

(
yim+1 · · · yT

)′
.

For computing the local linear estimator, JMulTi uses the bandwidth

ĥu = cuĥopt (9)

and a Gaussian kernel where the default setting is cu = 1 and where ĥopt denotes the plug-in

bandwidth (24). In the Specify Estimation Panel, see Section 9.1, the user may, however,

modify this bandwidth by selecting a different factor cu in the Factor to multiply plug-in

bandwidth with box. The local linear function estimator for the conditional mean function

µ(x) of a NAR model (1) is given by

µ̂(x, ĥu) = e′
{
Z′(x)W (x, ĥu)Z(x)

}−1

Z′(x)W (x, ĥu)y. (10)

JMulTi computes µ̂(·, ĥu) at

• a user given vector x where each element is by default set to the mean of yt and can

be changed in the Specify Estimation Panel in the Evaluate function at box.

• on a grid of values such that the function can be plotted, see Section 3.1.2, and the

Specify Estimation Panel, Section 9.1.

3.1.2 Plotting the function

If m ≤ 2, JMulTi estimates the conditional mean function on a grid of J points [x(1), . . . , x(J)].

If x is scalar, the grid points are equidistantly chosen on the interval [mint yt, maxt yt]. For

a two-dimensional regression vector x, J2 grid points are used with J equidistant points in

direction i covering the interval [mint xti, maxt xti], i = 1, 2. In the Specify Estimation

Panel, see Section 9.1, the user can change the default value J = 5 in the Grid points in

each direction box. Since this grid is rectangular, the function µ(·) is also computed at

points which are outside the data range. All function estimates at points outside the data
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range are suppressed from the plot since those estimates may exhibit a quite large estimation

variance.

Occasionally, the plot is strongly influenced by a few estimates close to the boundary of the

sample. If this is the case, then such data points can be expected to have a small density just

like points that are completely outside the data range. One therefore may wish to exclude

such points from the plot as well. Therefore, one can remove in JMulTi from the plot all

function estimates at points for which the estimated density f̂(x, ĥB) is in the b quantile of

lowest density values where ĥB is given by (20). This is done in the same panel in the box

Quantile of grid points to be suppressed in plot.

To estimate the density f(x) a kernel estimator is used. In order to exploit all available data

for estimating f(x), the kernel estimator

f̂(x, ĥB) = (T − im + i1)
−1

T+i1∑
t=im+1

KbhB
(xt − x) (11)

with the Gaussian kernel and the rule-of-thumb bandwidth (20) is used. The vectors xt,

t = T + 1, . . . , T + i1 are all available from the observations yt, t = 1, . . . , T . For example,

xT+i1 is given by (yT , . . . , yT+i1−im)′. This robustification which was suggested by Tjøstheim

and Auestad (1994) is switched off if the sum stops at T .

If there are more than two lags, m > 2, and one wants to plot the function, one lets x vary in

the directions of two lags and conditions on the values of the remaining lags. In the Specify

Estimation Panel the user can specify in the boxes 1st lag to plot and 2nd lag to plot

for which lags to plot the function. The conditioning values are by default set to the mean

of yt and can be changed in the box Condition plot at. When interpreting such plots one

has to bear in mind that changing the conditioning values also changes the plot.

3.1.3 Confidence Intervals

By checking in the Specify Estimation Panel, see Section 9, the Plot CIs (no 3D)

box, one can also compute confidence intervals if one allows the function to vary within one

direction only. The confidence intervals are computed at the grid points based on

[
µ̂(x, ĥu)− zα/2

√
v̂(x, ĥσ,opt, ĥu, ĥB)

T ĥm
u

, µ̂(x, ĥu) + zα/2

√
v̂(x, ĥσ,opt, ĥu, ĥB)

T ĥm
u

]
(12)

where ĥu = cuĥopt, zβ denotes the (1 − β) quantile of the normal distribution and the

estimator of the asymptotic estimation variance is given by

v̂(x, ĥσ,opt, ĥu, ĥB) =
σ̂2(x, ĥσ,opt, ĥu)||K||2m

2

f̂(x, ĥB)
. (13)
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Here, the conditional variance estimator σ̂2(x, ĥσ,opt, ĥu), the plug-in bandwidth ĥσ,u for the

conditional variance estimator and the density estimator f̂(x, ĥB) are given below by (31),

(38), and (11), respectively. In the CI level box one can change the default value of 0.95 of

the confidence level 1− α.

By checking the Bonferroni CIs box, one also can compute Bonferroni confidence intervals.

Thus, replacing α in (12) by

αj = α/J (14)

for each grid point guarantees that the overall confidence level is at least the desired confi-

dence level (1− α).

In addition to the confidence intervals (12) based on the conditional volatility function σ2(x),

JMulTi also computes confidence intervals based on the assumption of homoskedastic errors

by replacing in (13) the conditional variance estimator by the variance estimator (26) below.

3.2 Lag and Bandwidth Selection

3.2.1 The formulas

This section describes the nonparametric lag and bandwidth selection methods used in

JMulTi . All the settings described below can be controlled in the Specify Lag Selec-

tion Panel, see Section 8 for a detailed description.

Nonparametric lag selection in JMulTi is based on estimating the Asymptotic Final Predic-

tion Error (AFPE) or a corrected version thereof (CAFPE). For lag selection it is necessary

to a priori specify a set of possible lag vectors by choosing the largest candidate lag M in

the Largest Candidate Lag box. Denote the full lag vector containing all lags up to M

by xt,M = (yt−1, yt−2, . . . , yt−M)′.

Let w(·) denote a weight function. Then for the data generating process with lags i1, . . . , im

and bandwidth h the Asymptotic Final Prediction Error is given by

AFPE(h, i1, . . . , im) = A + b(h)B + c(h)C (15)

where the integrated variance A, the integrated variance of estimation b(h)B and the inte-

grated squared bias of estimation c(h)C with the (unknown) constants are given by
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A =

∫
σ2(x)w(xM)f(xM)dxM = E

[
σ2(xt)w(xt,M)

]
,

B =

∫
σ2(x)w(xM)f(xM)/f(x)dxM = E

[
σ2(xt)

w(xt,M)

f(xt)

]
,

C =

∫ (
tr

{
∂2µ(x)

∂x∂x′

})2

w(xM)f(xM)dxM (16)

= E

[(
tr

{
∂2µ(xt)

∂x∂x′

})2

w(xt,M)

]

and

b(h) = ||K||2m
2 (T − im)−1h−m, c(h) = σ4

Kh4/4. (17)

Note that the last two terms depend on the bandwidth and kernel constants only while A, B

and C are functionals of the unknown NAR model. The idea is to choose the lag combination

which leads to the smallest AFPE(·).
For a given lag combination {i1, . . . , im} the AFPE(h, i1, . . . , im) can also be used to obtain

the asymptotically optimal (global) bandwidth simply by minimizing AFPE(·) with respect

to h. It is given by

hopt =

{
m||K||2m

2 B

(T − im)σ4
KC

}1/(m+4)

. (18)

In practice, the constants A, B and C are unknown and have to be estimated. To maintain

the generality of the nonparametric model they are also nonparametrically estimated.

The constant B is estimated by

B̂(ĥB) =
1

T − im

T∑
t=im+1

{
yt − µ̂(xt, ĥB)

}2 w(xt,M)

f̂(xt, ĥB)
(19)

where f̂(·, ·) is the Gaussian kernel estimator (11) of the density f(x) and ĥB is Silverman

’s (1986) rule-of-thumb bandwidth

ĥB = σ̂

(
4

m + 2

)1/(m+4)

T−1/(m+4) (20)

with σ̂ =
(∏m

j=1

√
V ar(xt,j)

)1/m

denoting the geometric mean of the standard deviation of

the regressors.
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The constant C is estimated by

Ĉ(ĥC) =
1

T − im

T∑
t=im+1

[
m∑

j=1

µ̂(jj)(xt, ĥC)

]2

w(xt,M), (21)

where µ(jj)(·, ·) denotes the second-order direct derivative of the function µ(·). The second-

order direct derivatives are estimated with the direct local quadratic estimator

{ĉ0, ĉ11, . . . , ĉ1m, ĉ21, . . . , ĉ2m} = arg min{c0,c11,...,c1m,c21,...,c2m}∑T
t=im+1 {yt − c0 − c11(xt1 − x1)− · · · − c1m(xtm − xm) (22)

−c21(xt1 − x1)
2 − · · · − c2m(xtm − xm)2}2

Kh(xt − x).

where the estimates of the direct second derivatives are given by µ̂(jj)(x, ĥC) = 2ĉ2j, j =

1, . . . , m. The rule-of-thumb bandwidth ĥC is calculated as

ĥC = 2σ̂

(
4

m + 4

)1/(m+6)

T−1/(m+6) (23)

and has the correct asymptotic order, see Yang and Tschernig (1999).

Based on the estimated B and C, the plug-in bandwidth is given by

ĥopt =

{
m||K||2m

2 B̂(ĥB)

(T − im)Ĉ(ĥC)σ4
K

}1/(m+4)

. (24)

The constant A is estimated by

Â(h) =
1

T − im

T∑
t=im+1

{yt − µ̂(xt, h)}2 w(xt,M) (25)

In order to eliminate the asymptotic first-order bias from Â(h), the asymptotic bias is sub-

tracted. Thus, the integrated variance is estimated by

Â(ĥu) −
{

b(ĥu)− 2K(0)m

(T − im)ĥm
u

}
B̂(ĥB)− c(ĥu)Ĉ(ĥC). (26)

where as before ĥu = cuĥopt. Note that if cu is chosen too large, the last term becomes large

too and a negative estimate may result.
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Taking all estimates together, one can estimate the AFPE(·) given by (15). Note that for

computing the nonparametric lag selection criteria JMulTi always uses the plug-in bandwidth

ĥopt. The Asymptotic Final Prediction Error (AFPE) is calculated as

AFPE = Â(ĥopt) +
2K(0)m

(T − im)ĥm
opt

B̂(ĥB). (27)

Tschernig and Yang (2000) have shown that conducting lag selection based on AFPE is

consistent if the underlying data generating process is not linear, that is if C given by (16)

is positive.

Despite its consistency Tschernig and Yang (2000) have shown that the AFPE tends to

include lags in addition to the correct ones. In other words, overfitting is quite likely.

Therefore they suggest a Corrected Asymptotic Final Prediction Error (CAFPE).

The CAFPE is calculated as

CAFPE = AFPE
{
1 + m(T − im)−4/(m+4)

}
. (28)

It is also consistent but exhibits much better finite sample behavior. It should therefore be

used in practice.

For the choice of AFPE or CAFPE, the choice of a strategy to search through the possible

lag combinations and other issues, see Section 8.1.2.

3.2.2 Implementation

In all computations the weight function w(·) is taken to be the indicator function on the

data.

Computing B̂: For estimating the density the leave-one-out version of (11) is used. For

computing µ̂(xt, ĥB) the leave-one-out estimator is used as well.

Since function estimates for which the estimated density is within the 5%-quantile of the

lowest density values are likely to be unreliable, they are not used for computing B. The

number of observations in the denominator is adjusted accordingly.

In practice it may happen that the inversion in (10) fails due to numerical inaccuracies, e.g.

if there are only few observations or the bandwidth is relatively small. In this case, JMulTi

multiplies the current bandwidth by 1.05 and computes (10) with the larger bandwidth. If

the inversion still does not work, this procedure is repeated. If no success is reached after

30 iterations, the program stops.

Computing Ĉ(·): the last two measures are applied as well where (10) is replaced by (22).
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3.3 Conditional Volatility Analysis

3.3.1 Estimation of the Volatility Function

If the conditional mean function were known, one can define the ’demeaned’ errors

εt = yt − µ(xt), t = im + 1, . . . , T.

Inserting into (1) and manipulating a little bit leads to ε2
t = σ2(xt) + σ2(xt) (ξ2

t − 1), t =

im + 1, . . . , T . In practice the lags in σ2(·) may differ from those in µ(·). This is expressed

by generalizing (1) and allowing the conditional variance function to depend on a lag vector

xσ,t that is potentially different from xt:

ε2
t = σ2(xσ,t) + σ2(xσ,t)

(
ξ2
t − 1

)
, t = iσ,m + 1, . . . , T, (29)

and where iσ,m = max(im, imσ). Here imσ denotes the largest lag in xσ.

The stochastic process (29) is a slight modification of the NAR model (1) since the lags

in xσ,t are not lags of the new dependent variable ε2
t . A local linear estimator of σ2(xσ) is

obtained by slightly modifying (10).

Since in general µ(·) and therefore the errors εt’s are unknown, the errors have to be estimated

by

ε̂t(ĥu) = yt − µ̂(xt, ĥu), t = im + 1, . . . , T. (30)

The vector of squared residuals is then denoted by ε̂2(ĥu) =
(
ε̂2

im+1(ĥu), . . . , ε̂
2
T (ĥu)

)′
.

In the following all formulas will be given for the case of estimated errors. However, if µ(·)
is known, the vector of squared residuals ε̂2(ĥu) is replaced by ε2 and if µ(·) is assumed to

be zero, then ε̂2(ĥu) is replaced by y2.

Using the vector of squared residuals, the local linear estimator of the conditional variance

function σ2(xσ) is given by

σ̂2(xσ, ĥσ,u, ĥu) = e′
{
Z′(xσ)W (xσ, ĥσ,u)Z(xσ)

}−1

Z′(xσ)W (xσ, ĥσ,u)ε̂
2(ĥu) (31)

where

ĥσ,u = cσ,uĥσ,opt. (32)

By default cσ,u = 1 and the plug-in bandwidth (38) is used. Sometimes the plotted function

estimate may look not “smooth enough”. Then the user may increase the bandwidth ĥσ,u
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by setting cσ,u to a larger value. Note that if cσ,u is chosen very large, one obtains almost a

straight line that usually is up- or downward sloping.

If the inversion in (31) fails, then the computation is redone after multiplying the previously

used bandwidth by 1.05. This is done at most 30 times.

Note that the estimator σ̂2(xσ, ĥσ,u, ĥu) can lead to negative estimates even if a very large

bandwidth ĥσ,u is used. If such a situation arises, JMulTi replaces the local linear estimator

(31) by a local constant (Nadaraya-Watson) estimator

σ̂2
NW (xσ, ĥσ,u, ĥu) =

∑T
t=iσ,m+1 Kĥσ,u

(xσ,t − xσ)ε̂2
t (ĥu)∑T

t=iσ,m+1 Kĥσ,u
(xσ,t − xσ)

. (33)

3.3.2 Bandwidth and Lag Selection

In order to state bandwidth and lag selection for the conditional volatility function one has

to adapt the formulas of Section 3.2 with respect to the current dependent variables, the

squared residuals (29). Then for the data generating process with lags iσ,1, . . . , imσ and

bandwidth h the Asymptotic Final Prediction Error for the conditional variance is given by

AFPEσ(h, iσ,1, . . . , imσ) = Aσ + b(h)Bσ + c(h)Cσ (34)

where the integrated variance Aσ, the integrated variance of estimation b(h)Bσ and the

integrated squared bias of estimation c(h)Cσ with the (unknown) constants are given by

Aσ = (m4 − 1)E
[
σ4(xσ,t)w(xt,Mσ)

]
,

Bσ = (m4 − 1)E

[
σ4(xσ,t)

w(xt,Mσ)

f(xσ,t)

]
,

Cσ = E

[(
Tr

{
∂2σ2(xσ,t)

∂xσ∂x′σ

})2

w(xt,Mσ)

]

and b(h) and c(h) as before and Mσ ≥ iσ,m.

The asymptotically optimal bandwidth is given by

hσ,opt =

{
mσ||K||2mσ

2 Bσ

(T − iσ,m)σ4
KCσ

}1/(mσ+4)

. (35)

The constant Bσ is estimated by

B̂σ(ĥB, ĥu) =
1

T − iσ,m

T∑
t=iσ,m+1

{
ε̂2

t (ĥu)− σ̂2(xσ,t, ĥB, ĥu)
}2 w(xt,Mσ)

f̂(xσ,t, ĥB)
(36)
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where f̂(·) is the Gaussian kernel estimator (11) of the density f(xσ) and ĥB is Silverman

’s (1986) rule-of-thumb bandwidth (20) where the lag vector xσ, i1,σ and mσ are used. The

estimator σ̂2(xσ,t, ĥB, ĥu) is given by (31).

The constant Cσ is estimated by

Ĉσ(ĥC , ĥu) =
1

T − iσ,m

T∑
t=iσ,m+1

[
m∑

j=1

σ̂2
(jj)

(xt, ĥC , ĥu)

]2

w(xt,Mσ), (37)

where (σ2)(jj)(·) denotes the second-order direct derivative of the function σ2(·). The second-

order direct derivatives are estimated with an appropriately modified version of the direct

local quadratic estimator (22). Based on the estimated Bσ and Cσ, the plug-in bandwidth

for the conditional volatility estimator is given by

ĥσ,opt =

{
mσ||K||2mσ

2 B̂σ(ĥB, ĥu)

(T − iσ,m)Ĉσ(ĥC , ĥu)σ4
K

}1/(mσ+4)

. (38)

The constant Aσ is estimated by

Âσ(h, ĥu) =
1

T − iσ,m

T∑
t=iσ,m+1

{
ε̂2

t (ĥu)− σ̂2(xt, h, ĥu)
}2

w(xt,Mσ). (39)

In order to eliminate the asymptotic first-order bias from Âσ(h, ĥu), the asymptotic bias is

subtracted. Thus, the integrated variance is estimated by

Âσ(ĥσ,u, ĥu) −
{

b(ĥσ,u)− 2K(0)mσ

(T − iσ,m)ĥmσ
σ,u

}
B̂σ(ĥB, ĥu)− c(ĥσ,u)Ĉσ(ĥC , ĥu), (40)

where as before ĥσ,u = cσ,uĥσ,opt.

Taking all estimates together, one can estimate the AFPEσ(·). Note that JMulTi here always

uses the plug-in bandwidth ĥσ,opt. The AFPE for the conditional volatility is calculated as

AFPEσ = Âσ(ĥσ,opt, ĥu) +
2K(0)mσ

(T − iσ,m)ĥmσ
σ,opt

B̂σ(ĥB, ĥu). (41)

So far, consistency of lag selection based on (41) has only been shown for the special case

of f(·) = 0 on the domain of the weight function w(·). However, similar to the case of

the conditional mean function, lag selection based on AFPEσ cannot be consistent if the

process is homoskedastic since then Cσ = 0 and no bias-variance tradeoff exists. The latter

is required for the existence of an asymptotically optimal bandwidth. Thus, in case of
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homoskedastic processes, this lag selection procedure is likely to select superfluous lags! For

a non-zero conditional mean function f(·) there do not yet exist consistency results for this

lag selection estimator although consistency may be conjectured.

Assuming that AFPEσ also tends to include lags in addition to the correct ones, JMulTi

estimates the CAFPE for the conditional volatility. It is calculated as

CAFPEσ = AFPEσ

{
1 + mσ(T − iσ,m)−4/(mσ+4)

}
. (42)

3.3.3 Implementation

The same measures as for the conditional mean function are implemented. See Section 3.2.2.

3.3.4 Residual Analysis for Volatility Estimates

In order to check whether the fitted conditional volatility model is appropriate, the errors

ξt, t = im + 1, . . . , T are estimated by

ξ̂t(ĥσ,u, ĥu) =
ε̂t(ĥu)√

σ̂2(xt, ĥσ,u, ĥu)
=

yt − µ̂(xt, ĥu)√
σ̂2(xt, ĥσ,u, ĥu)

, t = im + 1, . . . , T, (43)

using the estimators presented in Section 3.3.1. All the residual checking for the volatility

estimates are done using the ξ̂t’s. Note if the conditional mean function µ(·) and the condi-

tional volatility function σ(·) of the NAR model (1) are correctly specified, the estimated ξt’s

should look like an i.i.d. sequence with mean 0 and variance 1. See the Check Residuals

of Volatility Estimation Panel in Section 11.3.

4 SNAR Models

This section summarizes the formulas and settings for the nonparametric estimation of the

seasonal nonlinear autoregressive (SNAR) model (2). The estimation and lag selection is

facilitated if there is an equal number of observations for each season. One then has to

guarantee that one has at least M ≥ im starting values for each season and estimation has

to start in τ = iM,S, where iM,S is the smallest integer equal to or greater than M/S. The

largest value of the nonseasonal index τ is given by TS =
[

T
S

] − 1, where [a] truncates the

fractional portion of a. The number of observations per season that is available for estimation

if the largest lag is M is denoted by TM,S = TS − iM,S + 1.

4.1 Estimation and Confidence Intervals

In this subsection it is assumed that the relevant lags have already been selected. If the lags

are not yet determined, see Section 4.2.
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4.1.1 Local Linear Estimation

The local estimators for estimating the seasonal conditional mean functions µs(·), s =

1, . . . , S, are obtained by estimating each seasonal function separately using only data of

season s. The local linear function estimators are given by

µ̂s(x, ĥS,u) = e′
{
Z′s(x)Ws(x, ĥS,u)Zs(x)

}−1

Z′s(x)Ws(x, ĥS,u)ys, s = 1, . . . , S, (44)

where the following notation is used:

Zs(x) =

(
1 · · · 1

xs+iM,SS − x · · · xs+TSS − x

)′

,

Ws(x, hs) = diag {Khs(xs+τS − x)/TM,S}TS

τ=iM,S
,

ys =
(

ys+iM,SS ys+(iM,S+1)S · · · ys+TSS

)′
.

For computing the local linear estimator, JMulTi uses the bandwidth

ĥS,u = cuĥS,opt (45)

with a Gaussian kernel where the default setting is cu = 1 and where ĥS,opt denotes the

plug-in bandwidth (56). In the Specify Estimation Panel, see Section 9.1, the user may,

however, modify this bandwidth by selecting a different factor cu.

JMulTi computes µ̂s(·, ĥS,u), s = 1, . . . , S, at

• a user given vector x where each element is by default set to the mean of yt and can

be changed in the Specify Estimation Panel in the Evaluate function at box.

• on a grid of values such that the function can be plotted, see Section 4.1.3, and the

Specify Estimation Panel, Section 9.1.

4.1.2 Confidence Intervals

One can also compute confidence intervals if one only allows the function to vary within one

direction. They are computed at the grid points based on, s = 1, . . . , S,


µ̂s(x, ĥS,u)− zα/2

√√√√ v̂s(x, ĥs,B, ĥS,u, ĥs,B)

TSĥm
S,u

, µ̂s(x, ĥS,u) + zα/2

√√√√ v̂s(x, ĥs,B, ĥS,u, ĥs,B)

TSĥm
S,u


 ,

(46)

where the estimator of the asymptotic seasonal estimation variance for season s is given by
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v̂s(x, ĥs,B, ĥS,u, ĥs,B) =
σ̂2

s(x, ĥs,B, ĥS,u)||K||2m
2

f̂s(x, ĥs,B)
, s = 1, . . . , S. (47)

Here the conditional variance estimator σ̂2
s(x, h, ĥS,u) (61) and the rule-of-thumb bandwidth

(53) are used.

To estimate the seasonal densities fs(x), s = 1 . . . , S, the kernel estimator

f̂s(x, h) =
1

TM,S

TS∑
τ=iM,S

Kh(xs+τS − x), s = 1, . . . , S, (48)

is used in JMulTi . The rule-of-thumb bandwidths ĥs,B, s = 1, . . . , S, are given in (53).

In addition to the confidence intervals (46) based on the estimated conditional volatility

function σ̂2
s(x), JMulTi also computes confidence intervals based on the assumption of ho-

moskedastic errors by replacing in (47) the conditional variance estimator by the variance

estimator (58) below. See Section 9.1 on how to choose the direction of interest i and

conditioning values, the significance level α, and the Bonferroni option.

4.1.3 Plotting the seasonal functions

If m ≤ 2, JMulTi estimates the conditional mean functions on a grid of points [x(1), . . . , x(J)].

If x is scalar, the J grid points are equidistantly chosen on the interval [mint yt, maxt yt]. For

a two-dimensional regression vector x, J2 grid points are used with J equidistant points in

direction i covering the interval [mint xti, maxt xti], i = 1, 2. In the Specify Estimation

Panel, see Section 9.1, the user can change the default value J = 5 in the Grid points in

each direction box. Since this grid is rectangular, the functions µs(·), s = 1, . . . , S, are

also computed at points which are outside the data range. All function estimates at points

outside the data range are suppressed from the plot since those estimates may exhibit a

quite large estimation variance.

Occasionally, the plots are strongly influenced by a few estimates close to the boundary

of the sample. If this is the case, then such data points can be expected to have a small

density just like points that are completely outside the data range. One therefore may wish

to exclude such points from the plots as well. Therefore, one can remove in JMulTi from the

plots all function estimates at points for which the estimated density f̂s(x, ĥs,B) given by

(48) is in the b-percent quantile of lowest density values where ĥs,B is given by (53). This is

done in the same panel in the box Quantile of grid points to be suppressed in plot.

If there are more than two lags, m > 2, and one wants to plot the functions, one lets x vary

in the directions of two lags and conditions on the values of the other lags. In the Specify

Estimation Panel the user can specify in the boxes 1st lag to plot and 2nd lag to plot

for which lags to plot the function. The conditioning values are by default set to the mean
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of yt and can be changed in the box Condition plot at. When interpreting such plots one

has to bear in mind that changing the conditioning values also changes the plot.

4.2 Lag and Bandwidth Selection

4.2.1 The formulas

For general information see Section 3.2 on the NAR model. This sections only contains the

formulas for the SNAR model that differ from the NAR model.

The Asymptotic Final Prediction Error for the SNAR model is given by

AFPES(h, i1, . . . , im) = AS + bS(h)BS + c(h)CS (49)

where the integrated variance AS, the integrated variance of estimation bS(h)BS and the

integrated squared bias of estimation cS(h)CS with the (unknown) constants are given by

AS =
1

S

S∑
s=1

∫
σ2

s(x)w(xM)fs(xM)dxM

BS =
1

S

S∑
s=1

∫
σ2

s(x)w(xM)fs(xM)/fs(x)dxM ,

CS =
1

S

S∑
s=1

∫ (
tr

{
∂2µs(x)

∂x∂x′

})2

w(xM)fs(xM)dxM

and

bS(h) = ||K||2m
2 (TM,S)−1h−m, c(h) = σ4

Kh4/4. (50)

For a given lag combination {i1, . . . , im} the AFPES(h, i1, . . . , im) can also be used to obtain

the asymptotically optimal (global) bandwidth. It is given by

hS,opt =

{
m||K||2m

2 BS

TM,Sσ4
KCS

}1/(m+4)

. (51)

The following estimators are used: The constant BS is estimated by

B̂S(ĥS,B) =
1

S

S∑
s=1

1

TM,S

TS∑
τ=iM,S

{
ys+τS − µ̂(xs+τS, ĥs,B)

}2 w(xs+τ,M)

f̂s(xs+τS, ĥs,B)
(52)

in which hS,B =
(

h1,B h2,B . . . hS,B

)′
and where f̂s(·) is the Gaussian kernel estimator

(48) of the density fs(x) and ĥB is Silverman ’s (1986) rule-of-thumb bandwidth
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ĥs,B = σ̂s

(
4

m + 2

)1/(m+4)

T
−1/(m+4)
M,S (53)

with σ̂s =
(∏m

j=1

√
V ar(ys−ij)

)1/m

denoting the geometric mean of the seasonal standard de-

viation of the regressors and where ys−ij =
(

ys+τiM,S−ij ys+τ(iM,S+1)−ij · · · ys+τTS−ij

)′
.

The constant CS is estimated by

ĈS(ĥS,C) =
1

S

S∑
s=1

1

TM,S

TS∑
τ=iM,S

[
m∑

j=1

µ̂(jj)
s (xs+τS, ĥS,C)

]2

w(xs+τS,M), (54)

in which hS,C =
(

h1,C h2,C . . . hS,C

)′
and where µ

(jj)
s (·) denotes the second-order direct

derivative of the function µs(·). The second-order direct derivatives are estimated with the

direct local quadratic estimator (22) that is adapted for each season. The rule-of-thumb

bandwidth is given by

ĥs,C = 3σ̂s

(
4

m + 4

)1/(m+6)

T
−1/(m+6)
M,S , s = 1, . . . , S. (55)

Based on the estimated BS and CS, the plug-in bandwidth is given by

ĥS,opt =

{
m||K||2m

2 B̂S(ĥS,B)

TM,SĈS(ĥS,C)σ4
K

}1/(m+4)

. (56)

The constant AS is estimated by

ÂS(h) =
1

S

S∑
s=1

1

TM,S

TS∑
τ=iM,S

{ys+τS − µ̂s(xs+τS, h)}2 w(xs+τS,M) (57)

In order to eliminate the asymptotic first-order bias from ÂS(h), the asymptotic bias is

subtracted. Thus, the integrated variance is estimated by

ÂS(ĥS,u) −
{

bS(ĥS,u)− 2K(0)m

TM,Sĥm
S,u

}
B̂S(ĥS,B)− c(ĥS,u)ĈS(ĥS,C) (58)

where as before ĥS,u = cuĥS,opt.

Taking all estimates together, one can estimate the AFPES(·). Note that JMulTi here always

uses the plug-in bandwidth ĥS,opt. The AFPE is calculated as
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AFPES = ÂS(ĥS,opt) +
2K(0)m

TM,Sĥm
S,opt

B̂S(ĥS,B). (59)

Yang and Tschernig (2002) have shown that conducting lag selection based on AFPE is

consistent if the underlying data generating process is not linear, that is if CS > 0.

Despite its consistency Tschernig and Yang (2000) have shown that the AFPE tends to

include lags in addition to the correct ones. In other words, overfitting is quite likely. There-

fore they suggest a corrected Asymptotic Final Prediction Error (CAFPE). The CAFPE is

calculated as

CAFPES = AFPES

{
1 + m(T − im)−4/(m+4)

}
. (60)

It is also consistent but exhibits much better finite sample behavior. It should therefore be

used in practice.

4.2.2 Implementation

In all computations the weight function w(·) is taken to be the indicator function on the

data.

Computing B̂S: For estimating the density the leave-one-out version of (48) is used. For

computing µ̂S(xt, ĥB) the leave-one-out estimator is used as well.

Since function estimates for which the estimated seasonal density is within the 5/S%-quantile

of the lowest density values for a given season are likely to be unreliable, they are not used

for computing BS. The number of observations in the denominator is adjusted accordingly.

In practice it may happen that the inversion in (44) for a given season fails due to numerical

inaccuracies, e.g. if there are only few observations or the bandwidth is relatively small. In

this case, JMulTi multiplies the current bandwidth by 1.05 and computes (44) with the larger

bandwidth. If the inversion still does not work, this procedure is repeated. If no success is

reached after 30 iterations, the program stops.

Computing ĈS(·): the last two measures are applied as well where (44) is replaced by (22)

which is used for each season separately.

4.3 Conditional Volatility Analysis

The seasonal conditional volatility function σs(·) has to be estimated for the computation of

the confidence intervals (46). This estimator will be described next.

4.3.1 Estimation of the Seasonal Volatility Function

For estimating the seasonal volatility function σs(x) one applies the estimation method for

σ(x) described in Section 3.3 just for the observations of season s. In contrast to the NAR
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model, JMulTi uses for the conditional mean and conditional variance estimation the same

lag vector x with lags i1, . . . , im. Also, there is no computation of the plug-in bandwidth

for the conditional variance estimator. Instead the rule-of-thumb bandwidth hs,B, given by

(53), is used. The resulting estimator for the conditional variance function is then

σ̂2
s(x, ĥs,B, ĥS,u) = e′

{
Z′s(x)Ws(x, ĥs,B)Zs(x)

}−1

Z′s(x)Ws(x, ĥs,B)ε̂2
s(ĥS,u), s = 1, . . . , S,

(61)

with the seasonal residual vector ε̂2
s(ĥS,u) =

(
ε̂2

s+iM,SS(ĥS,u), . . . , ε̂
2
s+TSS(ĥS,u)

)′
where each

element is obtained with the estimator (44)

ε̂s+τS(ĥS,u) = ys+τS − µ̂s(xs+τS, ĥS,u), τ = iM,S, . . . , TS, s = 1, . . . , S. (62)

Note that the estimator σ̂2
s(x, ĥs,B, ĥS,u) can lead to negative estimates. If such a situation

arises, JMulTi replaces the local linear estimator (61) by a local constant (Nadaraya-Watson)

estimator

σ̂2
s,NW (x, ĥs,B, ĥS,u) =

∑TS

τ=s+iM,SS Kbhs,B
(xs+τS − x)ε̂2

t (ĥS,u)∑TS

τ=s+iM,SS Kbhs,B
(xs+τS − x)

. (63)

4.3.2 Bandwidth and Lag Selection

Since for the seasonal conditional volatility function no plug-in bandwidth and no lag search

are available in JMulTi , the relevant formulas are not described here.

If one assumes that the conditional volatility function is independent of the season, that is

σs(x) = σ(x), then all the nonseasonal volatility estimators are available, see Section 3.3,

with the only exception that the residuals are obtained from (62) for all s = 1, . . . , S.

5 SDNAR Models

This section summarizes the formulas and settings for the nonparametric estimation of the

seasonal dummy nonlinear autoregressive (SDNAR) model (3). The estimation and lag

selection is facilitated if there is an equal number of observations for each season. One then

has to guarantee that one has at least M ≥ im starting values for each season and estimation

has to start in τ = iM,S, where iM,S is the smallest integer equal to or greater than M/S.

The largest value of the nonseasonal index τ is given by TS =
[

T
S

] − 1, where [a] truncates

the fractional portion of a. The number of observations per season that is available for

estimation if the largest lag is M is denoted by TM,S = TS − iM,S + 1.
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5.1 Estimation and Confidence Intervals

5.1.1 Estimation when Seasonal Dummies are known

If the seasonal dummies bs, s = 2, . . . , S were known where b1 = 0 for guaranteeing identi-

fication, one can transform the SDNAR model (3) into a variant of the NAR model (1) by

defining

ỹs+τS = ys+τS − bs, τ = iM,S, . . . , TS, s = 1, . . . , S. (64)

Then the SDNAR model can be written as

ỹs+τS = µ(xs+τS) + σ(xs+τS)ξs+τS

or simply as

ỹt = µ(xt) + σ(xt)ξt, t = 1 + iM,SS, . . . , S + TSS.

It is therefore possible to use all the nonparametric tools described in Section 3.1 for fitting

NAR models. One just has to replace in the local linear estimator (10) and in the estimation

of confidence intervals (12) yt by ỹt, im by iM,SS, T by S +TSS. For estimating the variance

of the nonparametric estimator that is needed to compute confidence intervals, as described

in Section 3.1.3 for NAR models, one uses the standard kernel density estimator

f̂D(x, ĥB) =
1

TM,SS

S+TSS∑
t=iM,SS+1

KbhB
(xt − x) (65)

for estimating the average density fD(x) = 1/S
∑S

s=1 fs(x).

5.1.2 Estimation of the Seasonal Dummies

In practice, the seasonal dummies bs, s = 2, . . . , S, are unknown and have to be estimated.

This can be done by using extending the local linear estimator (10) by seasonal dummy

variables. Define the dummy variable Ds+τS,s′ that is 1 if s = s′ and 0 otherwise. One then

can rewrite the SDNAR model (3) as

yt = µ(xt) +
S∑

s′=2

bsDt,s′ + σ(xt)ξt, t = 1 + iM,SS, . . . , S + TSS.

In order to estimate the seasonal dummies at a given point of interest x one simply includes

the dummy variables in the “regressor matrix”
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ZD(x) =




1 · · · 1

D1+iM,SS,2 · · · DS+TSS,2

...
. . .

...

D1+iM,SS,S · · · DS+TSS,S

x1+iM,SS − x · · · xS+TSS − x




′

and uses the local linear estimator

b̂s(x, ĥb) = e′s
{
Z′D(x)WD(x, ĥb)ZD(x)

}−1

Z′D(x)WD(x, ĥb)yD (66)

where es denotes an m+S vector whose sth element is 1 and all other elements 0, s = 2, . . . , S,

and where

WD(x, h) = diag {Kh(xt − x)/TM,S}T
t=1+iM,SS , yD =

(
y1+iM,SS · · · yT

)′
.

For robustification the leave-one-out version of (66) is used. Note that b̂s(x, h) varies with x

although for the underlying model bs is assumed constant. One therefore can average across

these estimators using a weighted average

b̄s(ĥb) =

∑TS

τ=iM,S
w(xs+τS,M )̂bs(xs+τS, ĥb)∑TS

τ=iM,S
w(xs+τS,M)

, s = 2 . . . , S (67)

where w(·) is the same weight function as in Section 3.2.1. Yang and Tschernig (2002) have

shown that (67) is consistent if the bandwidth decreases with T as for example in (20).

However, there does not exist an optimal asymptotic tradeoff due to the averaging. For this

reason the rule-of-thumb bandwidth (20) is used here, ĥb = ĥB.

One now can estimate the conditional mean function µ(x) and the conditional volatility

function σ(x) using the “estimated” dependent variables

̂̃ys+τS(ĥB) = ys+τS − b̄s(ĥB), τ = iM,S, . . . , TS, s = 1, . . . , S (68)

instead of the ones given in (64) as described in Section 5.1.1.

5.2 Lag and Bandwidth Selection

Using the same arguments as in Section 5.1.1 one can use the lag and bandwidth selection

techniques outlines in Section 3.2 once one has replaced yt by either ỹt given by (64) or ̂̃yt
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given by (68), im by iM,SS, and T by S + TSS. Furthermore, the kernel density estimator

(65) is used to estimate the average density fD(x) = 1/S
∑S

s=1 fs(x) and for estimating the

constant C given by (16) the rule-of-thumb bandwidth

ĥC = 3σ̂

(
4

m + 4

)1/(m+6)

T−1/(m+6) (69)

is used. Yang and Tschernig (2002) have shown that this lag selection method is consistent

under standard regularity conditions extended to seasonal stochastic processes.

6 SHNAR Models

This section summarizes the formulas and settings for the nonparametric estimation of the

seasonal shift nonlinear autoregressive (SHNAR) model (4). The estimation and lag selection

is facilitated if there is an equal number of observations for each season. One then has to

guarantee that one has at least M ≥ im starting values for each season and estimation has

to start in τ = iM,S, where iM,S is the smallest integer equal to or greater than M/S. The

largest value of the nonseasonal index τ is given by TS =
[

T
S

] − 1, where [a] truncates the

fractional portion of a. The number of observations per season that is available for estimation

if the largest lag is M is denoted by TM,S = TS − iM,S + 1.

If the seasonal mean shifts δ2, . . . , δS are known, δ1 = 0 by definition, one can obtain the

nonseasonal process

zs+τS = ys+τS − δs, τ = 0, 1, . . . , TS, s = 1, . . . , S, (70)

that is a NAR process (1) and use all the techniques from Section 3.

If the seasonal mean shifts δ2, . . . , δS are unknown, they can be estimated by taking the

seasonal averages

δ̂s =
1

TM,S

TS∑
τ=iM,S

(ys+τS − y1+τS) , s = 2, . . . , S (71)

This estimator has
√

T convergence (Yang and Tschernig (2002)) and converges thus faster

than the nonparametric estimators. One therefore can replace the unknown seasonal mean

shifts by their estimates and continue the analysis of the resulting NAR model for the

ẑs+τS = ys+τS − δ̂s, τ = 0, 1, . . . , TS, s = 1, . . . , S, (72)

as if the δs were known.
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For estimating the variance of the nonparametric estimator that is needed to compute

confidence intervals, as described in Section 3.1.3 for NAR models, one uses the stan-

dard kernel density estimator (65) on the standard process zt for estimating f(zt), t =

1 + iM,SS, . . . , S + TSS.

7 Linear Models

In the nonparametric module linear models are included for allowing quick comparisons

of linear with nonlinear modelling. See Section on Model Specification within VAR

Modelling for details on the lag selection criteria: FPE, AIC, HQ and SC. For each

estimated model, JMulTi delivers all lag selection criteria and the estimated white noise

variance for each model considered. Except for the SDAR model (7) the parameters of the

estimated model are also reported.

For linear models there is no further estimation, model checking or volatility analysis possible

within the Nonparametric Time Series module. For the AR model (5) and the SDAR

model (7) this can be done within the module VAR analysis .

It is, however, possible to compute one-step ahead forecasts and conduct rolling over predic-

tions, see Section 12.

8 Model and Lag Selection — The Select Model Panel

After having appropriately transformed the time series, one calls the nonparametric time

series module which opens with the Specify Lag Selection panel.

8.1 Specify Lag Selection Panel

The panel, see Figure 1, consists of two parts:

1. Model Choice and Data Preparation

In this part one chooses one of the models listed in Section 1 and decides on standard-

izing the time series before the analysis. This can be helpful if the available data are

very small in magnitude in order to avoid numerical problems and bad numbering of

the plot axes.

2. Lag Selection

In the lower part one selects the statistical procedure for lag selection.

8.1.1 Model Choice and Data Preparation

Select Model
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Figure 1: The Lag Selection Panel

First the user chooses a model class listed in Section 1. For yearly data no seasonal models

are available. Then one has the choice between

• the Heteroskedastic nonlinear autoregressive (NAR) model (1),

• the Linear autoregressive (AR) model (5).

For quarterly data one additionally obtains the various seasonal variants of these models.

For the nonlinear model these are:

• the Heteroskedastic nonlinear autoregressive (NAR) model (1),

• the Seasonal nonlinear autoregressive (SNAR) model (2),

• the Seasonal dummy nonlinear autoregressive (SDNAR) model (3),

• the Seasonal shift nonlinear autoregressive (SHNAR) model(4),

of which the last three allow for various degree of seasonality and for the linear models one

has:

• the Linear autoregressive (AR) model (5),

• the Periodic autoregressive (PAR) model (6),
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• the Seasonal dummy linear autoregressive (SDAR) model (7),

• the Seasonal shift linear autoregressive (SHAR) model (8).

For the linear models one can conduct lag selection which includes the estimation of the

model parameters and do rolling-over out-of-sample forecasts. For any further analysis of

linear models, the user has to use the VAR Analysis module in JMulTi .

For monthly data, these lists are the same except that the SDNAR and SDAR models are

not available.

Standardize data

If the numbers in the time series are either very small or very large, it is recommended to

standardize the data in order to avoid numerical inaccuracies.

8.1.2 Lag Selection

Lag selection criterion

In practice the relevant set of lags {i1, . . . , im} is unknown and has to be selected using a

statistical procedure. JMulTi provides several lag selection methods depending on the model

class chosen. If a nonlinear model was chosen, then JMulTi offers two nonparametric lag

selection criteria:

• CAFPE,

• AFPE.

These names indicate the underlying lag selection criterion: the estimated Asymptotic Final

Prediction Error (AFPE) or the estimated Corrected Final Prediction Error (CAFPE) are

given for the NAR model by (27) and (28), respectively. For the SNAR model the AFPE

and CAFPE are calculated by (59) and (60), respectively. For the SDNAR and SHNAR

model see Sections 5.2 and 6, respectively.

If a linear model is chosen, then the user can choose among the four standard lag selection

criteria:

• FPE,

• SC,

• HQ,

• AIC,
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where these abbreviations refer to the FPE criterion, the Akaike Information Criterion (AIC),

the Schwarz criterion (SC) and the Hannan-Quinn criterion (HQ) all stated in the Section

Model Selection for VAR Modelling .

Largest candidate lag and Maximum number of lags

All methods have in common that the user has to choose a largest candidate lag M

implying im ≤ M . Secondly, one has to choose the maximum number of lags m where

m ≤ M holds. Thus, for any selected set of lags {i1, . . . , im} it holds that

{i1, . . . , im} ⊆ {1, 2, . . . , M}.

Note that if the maximal lag M is large but the number of observations T is not sufficiently

large, then due to the curse of dimensionality of nonparametric methods one may have to

choose the maximal number of lags m smaller than the maximal lag M .

Search method over set of candidate lags

The choice of M and m is also related to the selection of the search method through all

possible lag combinations. JMulTi offers two options:

• full,

• directed/sequential.

A full search implies that all possible lag combinations are considered. Since the number

of possible lag combinations is given by

m∑
j=1

(
M

j

)
, m ≤ M,

an increase in M and m leads to a sharp increase in the number of possible lag combinations.

For example, M = m = 8 implies 255 models while M = m = 10 already leads to 1023

models. Since in case of a large number of observations nonparametric methods require

intensive computing, it may take too long to conduct a full search through all possible

lag combinations. In this case, one may prefer to conduct a directed/sequential search:

lags are added as long as they reduce the selection criterion and one adds that lag from the

remaining ones which delivers the largest reduction, see Tjøstheim and Auestad (1994) or

Section Subset Model Selection for VAR Modelling .

Selection of start values

Finally, JMulTi allows to select the Selection of start values:
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• same,

• different.

If the strategy same is chosen, there are always M start values used. Selecting the strategy

different implies that the starting values for each lag vector differ since i′m′ start values

are used for the set of lags {i′, . . . , i′m′}. Note that the lag selection procedures which are

implemented in the VAR Analysis module always use the same strategy.

More detailed output

Activating this option prints out more results about the models that are estimated during the

lag selection procedure. Therefore, the additional output depends on the model class chosen.

For example, for the heteroskedastic nonlinear autoregressive (NAR) model one additionally

obtains for each candidate model the estimated criterion value and error variance plus the

estimated constants and rule-of-thumb bandwidths used to compute the plug-in bandwidth,

see also the descriptions of the output windows below.

8.2 The Output Window

The output differs somewhat with respect to the selected model. In each subsection below,

a typical output is given with a reference to the relevant sections and equations in the help

file.

8.2.1 NAR model

JMulTi output Reference in help

Model and model selection parameters:

-------------------------------------

Selected model: NAR Section 1.1, eq. (1)

Largest lag considered: 5 Section 3.2.1

Number of maximal lags: 5 Section 3.2.1

Search method for lags: full Section 8.1.2

Startup values for search: same Section 8.1.2

Selection criterion: cafpe Section 3.2.1, eq. (27), (28)

Robustification of density est.: yes Section 3.1.2, eq. (11)

Estimator: local linear Section 3.1.1, eq. (10)

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05
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Estimation of rule-of-thumb bandwidths: Section 3.2.1, eq. (20), (23)

for B and C: 2 times h S,

see Section 5 in TY

Lag vector considered: 1

Lag vector considered: 2

...

Results:

--------

I. Main results:

Selected lags/indices of variables using

lqcafpe:

1 2

Associated criterion value: 0.052256700 Section 3.2.1, eq. (27), (28)

Estimated variance of white noise process:

0.049387968

Section 3.2.1, eq.

(26)

Estimated value of A: 0.047384559 Section 3.2.1, eq. (25)

II. Detailed results:

No. of lags selected vector of lags/indices

1 1 0 0 0 0

2 1 2 0 0 0

3 1 2 3 0 0

4 1 2 3 4 0

5 1 2 3 4 5

Section 3.2.1, Eq. (24), (20), (23)

No. of lags estim. est. asymp. rule-of-thumb rule-of-thumb

opt. bandwidth bandwidth bandwidth

for A, CAFPE for B for C

1 0.1404944 0.083415982 0.2170488

2 0.1564908 0.096794487 0.23796443
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3 0.17992529 0.1086378 0.25639658

4 0.20175129 0.11906889 0.27272341

5 0.21806246 0.12830897 0.28734557

Section 3.2.1, eq. (27) or (28), (26), (25)

No. of lags estim. crit. value est. var of WN est. value of A (if (C)AFPE)

0 0.073117374 0.073117374 0.073117374

1 0.053834969 0.052419338 0.05299321

2 0.0522567 0.047384559 0.049387968

3 0.056398429 0.043986363 0.049380432

4 0.089438726 0.041858601 0.067123068

5 0.12324969 0.038672169 0.082283728

CAPFE program terminated.

If the More Detailed Output box is checked, then one obtains for each model estimated

during the lag selection process detailed information. Below is given an example and the

relevant references to the equations in the help.

JMulTi output Reference in help

Lag vector considered: 2 4 5

Number of ddummies: 0 not relevant here

Rule-of-thumb bandwidth for estimating

density: 0.10880219

Section 3.2.1, eq.

(20)

Plug-in bandwidth for estimating A: 0.27245748 Section 3.2.1, eq. (24)

Rule-of-thumb bandwidth for estimating B:

0.10880219

Section 3.2.1, eq. (20)

Rule-of-thumb bandwidth for estimating C:

0.25678456

Section 3.2.1, eq. (23)

Estimated B: 3.3279067 Section 3.2.1, eq. (19)

Estimated C: 4.2513349 Section 3.2.1, eq. (21)

Plug-in bandwidth was modified by user

by multiplying it with 1 Section 3.1.1, eq. (9)

The user-specified bandwidth is 0.27245748

Estimated criterion value: 0.12341462 Section 3.2.1, eq. (27) or

(28)

Estimated error variance (bias cor.):

0.099678743

Section 3.2.1, eq. (26)
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8.2.2 SNAR model

JMulTi output Reference in help

Model and model selection parameters:

-------------------------------------

Selected model: SNAR Section 1.1, eq. (2)

Largest lag considered: 5 Section 4

Number of seasonal periods: 4 Section 4

Seasonal index of first obs.: 1 Section 4

Number of maximal lags: 5 Section 4

Search method for lags: full Section 8.1.2

Startup values for search: same Section 8.1.2

Selection criterion: cafpe Section 4.2, eq. (59) or (60)

Robustification of density est.: no Section 4.1.2, eq. (48)

Estimator: local linear Section 4.1.1, eq. (44)

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths: Section 4.2.1, eq. (53), (55)

for (seasonal) B and C: 3 times hat sigma s

in h C,s,

see Section 5 in YT

Lag vector considered: 1

Lag vector considered: 2

...

Results:

--------

I. Main results:

Selected lags/indices of variables using

lqcafpe:

1 2
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Associated criterion value: 1.2409324 Section 4.2.1, eq. (59) or

(60)

Estimated variance of white noise process:

1.0391558

Section 4.2.1, eq. (58)

Estimated value of A: 0.87854874 Section 4.2.1, eq. (57)

II. Detailed results:

No. of lags selected vector of lags/indices

1 3 0 0 0 0

2 1 2 0 0 0

3 1 2 3 0 0

4 1 2 3 4 0

5 1 2 3 4 5

Section 4.2.1, eq. (56), (53), (55)

No. of lags estim. est. asymp. rule-of-thumb rule-of-thumb

opt. bandwidth bandwidth bandwidth

for A, CAFPE for B for C

1 0.84121441 0.50047599 1.7863156

2 1.0389025 0.55074242 1.9027937

3 1.1856039 0.59498828 2.0042957

4 1.445014 0.63385914 2.0942206

5 1.4966391 0.66799197 2.1741233

Section 4.2.1, eq. (59) or (60), (58), (57)

No. of lags estim. crit. value est. var of WN est. value of A (if (C)AFPE)

0 1.4937676 1.4937676 1.4937676

1 1.4147312 1.2848181 1.3379717

2 1.2409324 0.87854874 1.0391558

3 1.7311953 0.77123293 1.221916

4 3.2313022 0.7529498 1.9192922

5 5.145759 0.62709141 2.6295519

CAPFE program terminated.

If the More Detailed Output box is checked, then one obtains for each model estimated

during the lag selection process detailed information. Below is given an example and the

relevant references to the equations in the help.

JMulTi output Reference in help
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Lag vector considered: 1 3 4 5

Number of ddummies: 0 not relevant here

Season 1 Section 4.2.1, eq. (53)

Rule-of-thumb bandwidth for estimating density

0.62079089

Season 2

Rule-of-thumb bandwidth for estimating density

0.62661431

Season 3

Rule-of-thumb bandwidth for estimating density

0.64383228

Season 4

Rule-of-thumb bandwidth for estimating density

0.64422054

Plug-in bandwidth for estimating A: 1.5748456 Section 4.2.1, eq. (56)

Rule-of-thumb bandwidths for estimating B: Section 4.2.1, eq. (53)

Season 1 0.62079089

Season 2 0.62661431

Season 3 0.64383228

Season 4 0.64422054

Rule-of-thumb bandwidths for estimating C: Section 4.2.1, eq. (55)

Season 1 2.05104409

Season 2 2.07028423

Season 3 2.12717102

Season 4 2.12845382

Estimated B: 20243.22 Section 4.2.1, eq. (52)

Estimated C: 0.13552392 Section 4.2.1, eq. (54)

Plug-in bandwidth was modified by user

by multiplying it with 1 Section 4.1.1, eq. (45)

The user-specified bandwidth is 1.5748456 Section 4.1.1, eq. (45)

Estimated criterion value: 3.6210272 Section 4.2.1, eq. (59) or

(60)

Estimated error variance (bias cor.):

2.1696382

Section 4.2.1, eq. (58)

8.2.3 SDNAR model

The output structure for the SDNAR model is the same as for the NAR model. Below some

references to the underlying estimation formulas and algorithms are given.
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JMulTi output Reference in help

Model and model selection parameters:

-------------------------------------

Selected model: SDNAR Section 1.1, eq. (3)

Largest lag considered: 5 Sections 5 and 3.2.1

Number of seasonal periods: 4 Section 5

Seasonal index of first obs.: 1 Section 5

Number of maximal lags: 5 Section 3.2.1

Search method for lags: full Section 8.1.2

Startup values for search: same Section 8.1.2

Selection criterion: cafpe Sections 5.2 and 3.2.1, eq.

(27), (28)

Robustification of density est.: no Section 5.1.1, eq. (65)

Estimator: local linear Sec. 5.1.2, eq. (68) and Sec.

3.1.1, eq. (10)

Estimator of seasonal dummies: full dummy

estimator

Sec. 5.1.2,

eq. (66)

with bandwidth used for B

and leave-one-out method

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths:

for (seasonal) B and C: 3 times hat sigma s

in h C,s,

Sec. 3.2.1,

eq. (20) and

see Section 5 in YT Sec. 5.2, eq. (69)

for density estimation: Silverman’s rule of thumb

with the geometric mean of the variance

for all lags.

The same bandwidth is used for all seasons.

For the relevant references of the

I. Main results:

see the references in Section 8.2.1 and keep in mind the modifications discussed in Section

5.2.
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If the More Detailed Output box is checked, one obtains in addition to what is shown for

the NAR model also estimates of the seasonal dummies bs, s = 2, . . . , S that are obtained

with the weighted average estimator (67).

8.2.4 SHNAR model

The output structure for the SHNAR model is the same as for the NAR model. Below some

references to the underlying estimation formulas and algorithms are given.

JMulTi output Reference in help

Model and model selection parameters:

-------------------------------------

Selected model: SHNAR Section 1.1, eq. (4)

Largest lag considered: 5 Sections 6 and 3.2.1

Number of seasonal periods: 4 Section 6

Seasonal index of first obs.: 1 Section 6

Number of maximal lags: 5 Section 3.2.1

Search method for lags: full Section 8.1.2

Startup values for search: same Section 8.1.2

Selection criterion: cafpe Sections 6 and 3.2.1, eq.

(27), (28)

Robustification of density est.: no Section 5, eq. (65)

Estimator: local linear Sec. 6, eq. (71) and Sec.

3.1.1, eq. (10)

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths:

for (seasonal) B and C: 3 times hat sigma s

in h C,s,

Sec. 3.2.1,

eq. (20) and

see Section 5 in YT Sec. 5.2, eq. (69)

When interpreting the

I. Main results:

keep in mind that they are obtained for the estimated nonseasonal process ẑt given by (72)

with the techniques of the NAR model. So all relevant references for this part of the output

are given in Section 8.2.1.

36



If the More Detailed Output box is checked, one obtains in addition to what is shown

for the NAR model also estimates of the seasonal shifts δs, s = 2, . . . , S that are obtained

with (71). Note that these estimates are independent of the chosen lag vector since the shift

estimates are obtained prior to lag selection.

9 Estimation and Confidence Intervals — The Estima-

tion Panel

9.1 Specify Estimation Panel

Figure 2: The Specify Mean Estimation Panel

The Specify Mean Estimation Panel, see Figure 2, allows to compute and plot nonpara-

metric function estimates. This requires to choose several parameters like the bandwidth,

the plotting area, the viewing angle, etc. Section 3 discusses these parameters for the NAR

model. Sections 4, 5, and 6 discuss these parameters for the SNAR, SDNAR, and SHNAR

models if their definitions differ from those of the NAR model. The following choices have

to be made:

Select set of lags for estimation / Edit sets of lags obtained from lag selection

The default lag combination that appears in the Select set of lags for estimation box

37



is the one that exhibits the smallest lag selection criterion among the set of candidate lags.

By clicking on the arrow, the optimal lag combinations for the other number of lags m are

offered. If for example, the lag selection procedure suggests three lags but the lag selection

criterion for two lags is only a small percentage larger, then the user may also investigate

the model with two lags.

The user can also change the lags that JMulTi offers for various m by activating the box Edit

sets of lags obtained from lag selection. This can be useful if one wants to estimate a

model for lags obtained from some other lag selection procedure, e.g. a procedure for linear

models.

1st lag to plot / 2nd lag to plot / Condition plot at

If the chosen lag vector includes more than two lags, the user can specify for which two lags

to plot the function using the 1st lag to plot and 2nd lag to plot boxes while keeping

the values for all other lags fixed. In JMulTi the default values for the latter ones are the

mean of yt. For each conditional lag the user can change these value in the Condition plot

at box. Note that by changing the conditioning values, the estimated function plot may

change. If m > 2, it is recommended to plot the function for several conditioning values.

Evaluate function at

Here the user can specify the point x at which to evaluate the conditional mean function.

The estimation result is given in the Output Panel. By default each element of x is set to

the mean of yt.

Plot CIs (no 3D) / Bonferroni CIs / CI level

If Plot CIs (no 3D) is marked, the estimates of the function including confidence intervals

are plotted at each grid point. To allow for a graphical representation the x values can only

be varied along one lag while for the other lags the values are conditioned on user specified

values that are specified in the box Condition plot at. The lag to be varied is chosen in

the 1st lag to plot box. The default confidence level α is 0.95. It can be changed in the CI

level box. To obtain Bonferroni confidence intervals (14), one has to check the Bonferroni

CIs box. The confidence intervals based on conditionally heteroskedastic errors are drawn

in dashed lines. The confidence intervals based on homoskedastic errors in dotted lines. For

the NAR model, the confidence intervals are computed with (12). For the SNAR model, the

confidence intervals are based on (46). For the SDNAR and SHNAR model the confidence

intervals are given by (12) after the seasonal effects were appropriately removed as described

in Sections 5.1 and 6, respectively.

Quantile of grid points to be suppressed in plot
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By default the function is plotted only for the range of the data. Since observations which

exhibit a small density are prone to a large estimation error, the user can remove the function

estimates for which the estimated density at the grid point is smaller than the specified

quantile in the box Quantile of grid points to be suppressed in plot. Note that the

value has to be smaller than 1, see also Section 3.1.2.

Grid points in each direction

Here one chooses the number of grid points J that are used for plotting the estimated mean

function in each direction. The default value is 5. For not too large samples J = 30 is

recommended. For details see Section 3.1.2. Note that the actual number of grid points for

which the function is shown can be smaller than J because some grid points are outside the

data range or have density estimates below the specified quantile above.

Factor to multiply plug-in bandwidth with

By default, JMulTi uses the plug-in bandwidth of the selected model. However, the user can

modify this bandwidth by multiplying the plug-in bandwidth ĥopt by a factor cu different

from the default value 1 as given by (9).

Note that by increasing cu the plotted function becomes smoother but potentially more biased

while by decreasing cu the plotted function becomes more irregular. Also the probability of

numerical failures increases.

This factor does not influence the various rule-of-thumb bandwidths used to obtain the

plug-in bandwidth ĥopt. For NAR models the plug-in bandwidth is given by (24). For SNAR

models the plug-in bandwidth is given by (56). For SDNAR and SHNAR models the plug-in

bandwidth is given by (24) after the seasonal effects were appropriately removed as described

in Sections 5.1 and 6, respectively.

More detailed output

By checking this box, one obtains also the rule-of-thumb bandwidths that are used for

estimating the density, the constants B and C, the plug-in bandwidth, the user-specified

bandwidth, the estimated lag selection criterion, the estimated bias corrected error variance,

and in case of seasonal models the estimated seasonal dummies or shifts, respectively. For

the relevant formulas for the NAR, SNAR, SDNAR, and SHNAR models see the end of

Sections 8.2.1, 8.2.2, 8.2.3, and 8.2.4, respectively.

Show Graphics

By default this box is marked. If one is only interested in computing the function value at

specific values, then one should unmark this box to save computation time, especially if the

sample and/or the number of lags are large.
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Rotate surface plot

Sometimes the function plot has to be rotated in order to be more informative. JMulTi

allows choose between four different angles: 0,90, 180, and 270 degrees.

9.2 The Output Window

9.2.1 NAR model

Here only that output is explained that was not explained in Section 8.2.1.

JMulTi output Reference in help

Model and model estimation parameters:

-------------------------------------

Selected model: NAR Section 1.1, eq. (1)

Lags: 1 2

Number of observations

in time series: 478

for estimation: 476

Number of maximal lags: 2 Section 3.2.1

Multiplication fac. of opt. bandw. 1 Section 3.1.1, eq. (9)

Robustification of density est.: yes Section 3.1.2, eq. (11)

Estimator: local linear Section 3.1.1, eq. (10)

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths: Section 3.2.1, eq. (20), (23)

for B and C: 2 times h S, see Section 5 in TY

Estimation:

-----------------------------------------------------

Plug-in bandwidth was modified by user

by multiplying it with 1 Section 3.1.1, eq. (9)

The user-specified bandwidth is 0.1575787

Estimated criterion value: 0.052195486 Section 3.2.1, eq. (27) or

(28)

Estimated error variance (bias cor.):

0.0493691

Section 3.2.1, eq. (26)

Variance of dependent variable: 0.072996196
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JMulTi output Reference in help

The local linear estimates for sigma^ 2 for

computing

confidence intervals are negative.

Therefore the Nadaraya-Watson estimator was

used

see Section 3.3.1, eq.

(33)

with bandwidth: 0.26108666

Plot settings:

Range of grid for plotted lags 1 :

Minimum: -1.4 Section 3.1.2: min xt1

Maximum: 1.6 max xt1

Estimated function values on grid:

Minimum: -1.3126462

Maximum: 1.2792382

Estimated function values within data range:

Minimum: -1.3126462

Maximum: 1.2792382

Function estimates at user-given value: Section 3.1.1, Evaluate

function at box

User-given values of lags:

Lag 1 0.00251046

Lag 2 0.00251046

Estimated function Confidence interval Sections 3.1.1, eq. (10), Sec-

tion 3.1.3, eq. (12)

-0.02666990 [ -0.04340, -0.00994]

Estimated conditional error variance Section 3.3.1, eq. (31)

0.04675225

Estimated variance of function estimate Section 3.1.3, eq. (13)

0.00007283

If the More Detailed Output box is checked, one additionally obtains for the chosen

model the same information as described at the end of Section 8.2.1 for the case of that box

checked plus the largest estimated density value.
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9.2.2 SNAR model

Model and model estimation parameters:

-------------------------------------

Selected model: SNAR

Lags: 1 2

Number of observations

in time series: 400

for estimation: 396

Number of seasonal periods: 4

Seasonal index of first obs.: 1

Number of maximal lags: 2

JMulTi output Reference in help

Multiplication fac. of opt. bandw. 1 Section 4.1.1, eq. (45)

Robustification of density est.: no Section 4.1.2, eq. (48)

Estimator: local linear Section 4.1.1, eq. (44)

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths: Section 4.2.1, eq. (53), (55)

for (seasonal) B and C: 3 times hat sigma s

in h C,s,

see Section 5 in YT

Estimation:

--------------------------------------------------

Plug-in bandwidth was modified by user by

multiplying it with 1

Section

4.1.1, eq. (45)

The user-specified bandwidth is 1.04657 Section 4.1.1, eq. (45)

Estimated criterion value: 1.2402579 Section 4.2.1, eq. (59) or

(60)

Estimated error variance (bias cor.):

1.038315

Section 4.2.1, eq. (58)

Variance of dependent variable: 1.4920316

The local linear estimates for sigma2̂ for

computing

Can happen at some grid

points or
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confidence intervals are negative. at the point of function eval-

uation.

Therefore the Nadaraya-Watson estimator was

used

See Section 4.3.1, eq. (63)

with bandwidth: 0.56497067

Plot settings:

Range of grid for plotted lags 1 :

Minimum: -3.9743827 Section 4.1.3: min xti

Maximum: 3.3184761 max xti

Estimated function values on grid:

Minimum Maximum

Season 1 -0.86278994 0.60236634

Season 2 -1.28220243 0.15912244

Season 3 -0.08657884 1.73539075

Season 4 0.30601623 0.86821286

Estimated function values within data range:

Season 1 -0.86278994 0.55959997

Season 2 -1.26712183 0.15912244

Season 3 -0.08657884 1.43355654

Season 4 0.30601623 0.84617218

JMulTi output Reference in help

Function estimates at user-given value:

User-given values of lags: Section 4.1.1, Evaluate

function at box

Lag 1 0.03911911

Lag 2 0.03911911

Estimated function Confidence interval Sec. 4.1.1, eq. (44), Sec.

4.1.2, eq. (46)

Season 1 -0.14958573 [ -0.27489, -0.02428]

Season 2 0.11692264 [ -0.04426, 0.27811]

Season 3 0.04401730 [ -0.11604, 0.20408]

Season 4 0.35171448 [ 0.18367, 0.51976]

Estimated conditional error variance Section 4.3, eq. (61)

Season 1 0.51532872

Season 2 1.05412327

Season 3 0.93395861
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Season 4 1.01977286

Estimated variance of function estimate Section 4.1.2, eq. (47)

Season 1 0.00408741

Season 2 0.00676327

Season 3 0.00666900

Season 4 0.00735151

If the More Detailed Output box is checked, one additionally obtains for the chosen

model the same information as described at the end of Section 8.2.2 for the case of that box

checked plus the largest estimated density value.

9.2.3 SDNAR model

JMulTi output Reference in help

Model and model estimation parameters:

-------------------------------------

Selected model: SDNAR

Lags: 2 3

Number of observations

in time series: 400

for estimation: 396

Number of seasonal periods: 4

Seasonal index of first obs.: 1

Number of maximal lags: 2

Multiplication fac. of opt. bandw. 1 Sections 5.1 and 3.1.1, eq.

(9)

Robustification of density est.: no Section 5.1.1, eq. (65)

Estimator: local linear Section 5.1 and 3.1.1, eq.

(10)

Estimator of seasonal dummies: full dummy

estimator

Section 5.1.2, eq. (67)

with bandwidth used for B

and leave-one-out method

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths:
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for (seasonal) B and C: 3 times hat sigma s

in h C,s,

Sec. 3.2.1, eq. (20) and

see Section 5 in YT Sec. 5.2, eq. (69)

for density estimation: Silverman’s rule of

thumb

with the geometric mean of the variance

for all lags.

The same bandwidth is used for all seasons.

Estimation:

----------------------------------------------------------

Plug-in bandwidth was modified by user Sections 5.1 and 3.1.1, eq.

(9)

by multiplying it with 1

The user-specified bandwidth is 1.122137 Sections 5.1 and 3.1.1, eq.

(9)

Estimated criterion value: 1.3426868 Sections 5.2 and 3.2.1, eq.

(27), (28)

Estimated error variance (bias cor.):

1.2846364

Sections 5.2 and 3.2.1, eq.

(26))

Variance of adjusted dependent variable

after subtracting seas. dummies: 1.3977238 Section 5.1.2, estimated var.

of ̂̃yt

The local linear estimates for sigma^ 2 for

computing

Can happen at some grid

points or

confidence intervals are negative. at the point of function eval-

uation.

Therefore the Nadaraya-Watson estimator was

used

See Section 3.3.1 eq. (33)

with bandwidth: 0.45066405

Plot settings:

Range of grid for plotted lags 2 :

Minimum: -3.9743827 Section 5.1 and 3.1.2:

min xti

Maximum: 3.3184761 maxti

Estimated function values on grid:

45



Minimum: -0.38675278

Maximum: 0.35096583

Estimated function values within data range:

Minimum: -0.38675278

Maximum: 0.35096583

JMulTi output Reference in help

Function estimates at user-given value: Section 3.1.1, Evaluate

function at box

User-given values of lags:

Lag 2 0.03911911

Lag 3 0.03911911

Estimated function Confidence interval Sec. 5.1, 3.1.1, eq. (10), Sec.

3.1.3, eq. (12)

-0.32887876 [ -0.40940, -0.24835]

Estimated conditional error variance Sections 5.1, 3.3.1, eq. (31)

1.16748962

Estimated variance of function estimate Sections 5.1, 3.1.3, eq. (13)

0.00168802

For your information:

Estimated parameters of linear AR model

for adjusted data with the same lag vector:

cons -0.36406641

ar2 0.01208118

ar3 -0.01511652

If the More Detailed Output box is checked, one obtains in addition to what is shown for

the NAR model also estimates of the seasonal dummies bs, s = 2, . . . , S that are obtained

with the weighted average estimator (67) plus the largest estimated density value.

9.2.4 SHNAR model

JMulTi output Reference in help

Model and model estimation parameters:

-------------------------------------
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Selected model: SHNAR

Lags: 1 3 4

Number of observations

in time series: 400

for estimation: 396

Number of seasonal periods: 4

Seasonal index of first obs.: 1

Number of maximal lags: 3

Multiplication fac. of opt. bandw. 1 Sections 6 and 3.1.1, eq. (9)

Robustification of density est.: no Sections 6 and 5, eq. (65)

Estimator: local linear Section 6 and 3.1.1, eq. (10)

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths:

for (seasonal) B and C: 3 times hat sigma s

in h C,s,

Sec. 3.2.1, eq. (20) and

see Section 5 in YT Sec. 5.2, eq. (69)

Estimation:

---------------------------------------------------

Variance of time series

prior to removing seasonal shifts: 1.4937676 Section 6, estimated var. of

yt

after removing seasonal shifts: 1.4013364 Section 6, estimated var. of

ẑt

Plug-in bandwidth was modified by user Sections 6 and 3.1.1, eq. (9)

by multiplying it with 1

The user-specified bandwidth is 1.087427 Sections 5.1 and 3.1.1, eq.

(9)

Estimated criterion value: 1.35679 Sections 6 and 3.2.1, eq.

(27), (28)

Estimated error variance (bias cor.):

1.2084679

Sections 6 and 3.2.1, eq.

(26))

Variance of dependent variable

after subtracting seasonal means: 1.3939975 Section 6, estimated var. of

ẑt,

t = 1 + iM,SS, . . . , S + TSS
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Plot settings:

Range of grid for plotted lags 1 3 :

Minimum: -4.4925164 Section 6 and 3.1.2: min xti

Maximum: 2.7988276 maxti

Values of conditioning lags: Section 6 and 3.1.2

Lag 4 0.03911911

Estimated function values on grid:

Minimum: -1.7185371

Maximum: 0.60630696

Estimated function values within data range:

Minimum: -1.7185371

Maximum: 0.60630696

JMulTi output Reference in help

Function estimates at user-given value: Section 3.1.1, Evaluate

function at box

User-given values of lags:

Lag 1 0.03911911

Lag 3 0.03911911

Lag 4 0.03911911

Estimated function Confidence interval Sec. 6, 3.1.1, eq. (10), Sec.

3.1.3, eq. (12)

-0.41953673 [ -0.51951, -0.31957]

Estimated conditional error variance Sections 6, 3.3.1, eq. (31)

1.45294917

Estimated variance of function estimate Sections 6, 3.1.3, eq. (13)

0.00260161

For your information: Estimated parameters of

linear AR model

for seasonally adjusted data with the same

lag vector:

cons -0.43153934

ar1 -0.08482477

ar3 -0.00850772

ar4 0.02273316

48



If the More Detailed Output box is checked, one obtains in addition to what is shown for

the NAR model also estimates of the seasonal mean shifts δs, s = 2, . . . , S that are obtained

with the estimator (71) plus the largest estimated density value.

10 Model Checking — The Model Checking Panel

For model checking one has the same options as for the residuals of VAR models, see Figure 3:

a Portmanteau test, an univariate ARCH-LM test, an LM test for autocorrelation (Godfrey

test), a test for nonnormality (Jarque-Bera-Lomnicki test). In addition, one can plot or save

the residuals, compute their spectrum and estimate their density with a kernel estimator. It

has to be noted, however, that the asymptotic distributions of the residual tests are not well

analysed in the case of nonparametric residuals. For a detailed description of the various

tests see Section Diagnostic Tests in the VAR Chapter .

Figure 3: The Model Checking Panel

11 Analysis of Conditional Volatility — The Volatility

Analysis Panel

11.1 The Specify Lag Selection for Volatility Panel

The lag selection panel, see Figure 4, looks a bit similar to the one available for the conditional

mean function, see Section 8.1. Note, however, that the lag selection depends on the residuals

of the estimated conditional mean function. Since the latter also depends on the user-

specified bandwidth ĥu, see Section 9.1, so does the lag selection!

Select Model
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Figure 4: The Specify Lag Selection for Volatility Panel

There are two model classes available

• the modified NAR model (29),

• the modified SDNAR model

The SDNAR model for the conditional volatility function assumes

σ2
s(x) = σ2(x) + bσ,s, s = 1, . . . , S.

It is estimated by adapting the estimation and lag selection techniques developed for the

SDNAR model (3) for the conditional mean function, see Section 5, to the process

ε2
s+τS = σ2(xs+τS)+bσ,s+

(
σ2(xs+τS) + bσ,s

) (
ξ2
s+τS − 1

)
, τ = iM,S, . . . , TS, s = 1, . . . , S.

Select criterion

JMulTi offers two nonparametric lag selection criteria:

• CAFPE given by (42),

• AFPE given by (41).

Largest candidate lag and Maximum number of lags

One has to choose a Largest candidate lag Mσ implying iσ,m ≤ Mσ, see Section 3.3.1.

Secondly, one has to choose the Maximum number of lags mσ where mσ ≤ Mσ holds.

Thus, for any selected set of lags {iσ,1, . . . , imσ} it holds that

{iσ,1, . . . , imσ} ⊆ {1, 2, . . . , Mσ}.

Since the bandwidth and lag selection procedures for the NAR model (1) assume that the

lags of the conditional volatility function are contained in the set of lags of the conditional
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mean function, one should set now Mσ to the largest lag of the conditional mean function.

JMulTi allows, however, to choose other values as well.

Select search method

The choice of Mσ and mσ is also related to the selection of the search method through all

possible lag combinations. JMulTi offers two options:

• full,

• directed/sequential.

See Section 8.1.2 for details.

Selection of start values

Finally, JMulTi allows to select the strategy for start values:

• same,

• different.

See Section 8.1.2 for details.

Standardize data

If the numbers in the time series are either very small or very large, it is recommended to

standardize the data in order to avoid numerical inaccuracies.

set f(y)=0; resids=y

If this box is checked, it is assumed in the NAR model (1) that f(·) = 0. In this case the

asymptotic properties of the nonparametric lag selection procedure are known, see Section

3.3.2.

More detailed output

Activating this option prints out more details of the lag selection procedure.

11.1.1 The Output Window

JMulTi output Reference in help

Model and model selection parameters:

-------------------------------------

Selected model: NAR RES Section 3.3.1, eq. (29)
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Largest lag considered: 5 Section 11.1

Dependent var. for vol. est. resid Section 3.3.1, eq. (30)

Number of maximal lags: 5 Section 11.1

Search method for lags: full Section 11.1

Startup values for search: same Section 11.1

Selection criterion: cafpe Section 3.3.2, eq. (42) or

(41)

Robustification of density est.: yes Section 3.1.2, eq. (11)

Estimator: local linear Section 3.3.1, eq. (31)

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths: Section 3.2.1, eq. (20), (23)

for B and C: 2 times h S,

see Section 5 in TY

Lag vector considered: 1

...

Results:

--------

I. Main results:

Selected lags/indices of variables using

lqcafpe:

2 3 4

Associated criterion value: 32.186489 Section 3.3.2, eq. (41) or

(42)

Estimated variance of white noise process:

28.023850

Section 3.3.2, eq. (40)

Estimated value of A: 22.616863 Section 3.3.2, eq. (39)

II. Detailed results:

No. of lags selected vector of lags/indices

1 5 0 0 0 0

2 4 5 0 0 0
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3 2 3 4 0 0

4 1 2 3 5 0

5 1 2 3 4 5

Section 3.3.2, eq. (38), (20), (23)

No. of lags estim. est. asymp. rule-of-thumb rule-of-thumb

opt. bandwidth bandwidth bandwidth

for A, CAFPE for B for C

1 0.70580796 0.49545813 1.3468487

2 0.94736621 0.58971019 1.4967764

3 1.2298677 0.67327542 1.6281021

4 1.5688133 0.74745893 1.7451211

5 2.120392 0.81391603 1.8511669

Section 3.3.2, eq. (41) or (42), (40), (39)

No. of lags estim. crit. value est. var of WN est. value of A (if (C)AFPE)

0 46.57824 46.57824 46.57824

1 41.636589 40.95766 41.246061

2 36.167125 32.806977 34.470385

3 32.186489 22.616863 28.02385

4 57.341679 22.587037 43.87247

5 163.93045 20.142672 110.79945

CAPFE program terminated.

If the More Detailed Output box is checked, then one obtains for each model estimated

during the lag selection process detailed information. Below is given an example and the

relevant references to the equations in the help.

JMulTi output Reference in help

Lag vector considered: 1

Number of ddummies: 0 not relevant here

Rule-of-thumb bandwidth for estimating

density: 0.49482842

Section 3.2.1, eq.

(20)

Plug-in bandwidth for estimating A: 0.8545354 3.3.2, eq. (38)

Rule-of-thumb bandwidth for estimating B:

0.49482842

Section 3.2.1, eq. (20)

Rule-of-thumb bandwidth for estimating C:

1.3451369

Section 3.2.1, eq. (23)
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Estimated B: 408.32055 Section 3.3.2, eq. (36))

Estimated C: 0.24709865 Section 3.3.2, eq. (37)

Plug-in bandwidth was modified by user

by multiplying it with 1 Section 3.3.1, eq. (32)

The user-specified bandwidth is 0.8545354 Section 3.3.1, eq. (32)

Estimated criterion value: 45.269155 Section 3.3.2, eq. (41) or

(42)

Estimated error variance (bias cor.):

44.928171

Section 3.3.2, eq. (40)

11.2 The Volatility Estimation Panel

The estimation panel, see Figure 5, looks quite similar to the one available for the conditional

mean function, see Section 9.1. Note, however, that the estimation depends on the residuals

of the estimated conditional mean function except if the box Set conditional mean to zero

(f(y)=0; resids=y) is activated. Since the residuals also depends on the bandwidth ĥu

that the user specified for the conditional mean estimation, so does the volatility estimation!

Figure 5: The Specify Volatility Estimation Panel

Set conditional mean to zero (f(y)=0; resids=y)

If this box is checked, it is assumed in the NAR model (1) that f(·) = 0. In this case the
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asymptotic properties of the nonparametric lag selection procedure are known, see Section

3.3.2. This is useful if the conditional mean function is negligible as is sometimes the case

for financial data. Moreover, this option can be used to investigate the importance of the

estimated conditional mean function on the conditional volatility estimates.

Select set of lags for estimation / Edit sets obtained from lag selection

By default the lag combination with the smallest lag selection criterion is chosen. By clicking

on the arrow, the optimal lag combinations for other number of lags are offered. If for

example, the lag selection procedure suggests three lags but the lag selection criterion for

two lags is only a small percentage larger, then the user may also investigate the model with

two lags.

The user can also change the lags that JMulTi offers by activating the box Edit sets ob-

tained from lag selection and changing the appropriate lag vectors.

1st lag to plot / 2nd lag to plot(for 3D) / Condition plot at

If the chosen lag vector includes more than two lags, the user can specify for which two lags

to plot the function while keeping the values for all other lags fixed. By default, JMulTi sets

these values equal to the mean of yt. For each lag the user can change this value in the

Condition plot at line.

Quantile of grid points to be suppressed in plot / Grid points in each direction

By default the function is plotted only on the range of the data where the default number of

grid points in each direction is 5. Since observations which exhibit a small density are prone

to a large estimation error, the user can remove the function estimates for the points which

are within the given quantile of the density by choosing in the Quantile of grid points to

be suppressed in plot box a value between zero and smaller than one.

Factor to multiply plug-in bandwidth with

Here the user can set cσ,u, see equation (32), to another value than 1. The bandwidth for

estimating the conditional mean function is cσ,uĥσ,opt where ĥσ,opt is given by (38). Note

that by increasing cσ,u the plotted function becomes smoother but potentially more biased

while by decreasing cσ,u the plotted function becomes more irregular. Also the probability

of numerical failures increases. Remember that the estimation results also depend on the

estimated errors and thus on the bandwidth ĥu selected for the conditional mean function.

Also keep in mind that the plug-in bandwidth for the volatility estimation ĥσ,opt given by (38)

can be misleading if the stochastic process is homoskedastic, see the second last paragraph

of Section 3.3.2.
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More Detailed Output

By checking this box one obtains results that were used to compute the plug-in bandwidth

plus the largest estimated density value.

Show Graphics

By default this box is marked. If one is only interested to compute the function value at

specific values, then one should unmark this box to save computation time, especially if the

sample and/or the number of lags are large.

Rotate surface plot

Sometimes the function plot has to be rotated in order to be more informative. JMulTi

allows to choose between four different angles: 0,90, 180, and 270 degrees.

11.2.1 The Output Window

JMulTi output Reference in help

Model and model estimation parameters:

-------------------------------------

Selected model: NAR RES Section 3.3.1, eq. (29)

Lags: 2 3 4

Number of observations

in time series: 1028

for estimation: 1024

Dependent var. for vol. est. resid Section 3.3.1, eq. (30)

Number of maximal lags: 3

Multiplication fac. of opt. bandw. 1 Section 3.3.1, eq. (32)

Robustification of density est.: yes Section 3.1.2, eq. (11)

Estimator: local linear Section 3.3.1, eq. (31)

Fraction of obs. screened off Section 3.2.2

for estimating A: 0

for estimating B and C: 0.05

Estimation of rule-of-thumb bandwidths: Section 3.2.1, eq. (20), (23)

for B and C: 2 times h S, see Section 5 in TY

Estimation:

----------------------------------------------
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Plug-in bandwidth was modified by user

by multiplying it with 1 Section 3.3.1, eq. (32)

The user-specified bandwidth is 1.2296555 Section 3.3.1, eq. (32)

Estimated criterion value: 32.147393 Section 3.3.2, eq. (41) or

(42)

Estimated error variance (bias cor.):

27.991689

Section 3.3.2, eq. (40)

Variance of dependent variable: 46.66236

The local linear estimates for sigma^ 2 on the

grid are negative.

Therefore the Nadaraya-Watson estimator was

used

Can happen at some

grid points.

with bandwidth: 1.2296555 See Section 3.3.1 eq. (33)

Plot settings:

Range of grid for plotted lags 2 3 :

Minimum: -9.5756091 Section 3.1.2: min xt1

Maximum: 7.5526755 max xt1

Values of conditioning lags:

Lag 4 -0.06302198 Section 11.2, Condition

plot at box

Estimated function values on grid:

Minimum: 1.2918056

Maximum: 6.7194156

Estimated function values within data range:

Minimum: 1.4447175

Maximum: 5.9019027

If the More Detailed Output box is checked, one additionally obtains for the chosen

model the same information as described at the end of Section 11.1.1 for the case of that

box checked plus the largest estimated density value.

11.3 The Check Residuals of Volatility Estimation Panel

In this panel, see Figure 6, one can check the residuals ((43) of the specified and estimated

NAR model (1) and see whether they correspond to the assumption of being i.i.d. with mean

0 and variance 1.

To check the residuals the same battery of procedures is available as for VAR models: a Port-

manteau test, an univariate ARCH-LM test, and an LM test for autocorrelation (Godfrey
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test). In addition, one can plot or save the residuals, compute their spectrum and estimate

their density with a kernel estimator. It has to be noted, however, that the asymptotic dis-

tributions of the residual tests are not well analysed in the case of nonparametric residuals.

For a detailed description of the various tests see Section Diagnostic Tests in the VAR

Chapter.

Figure 6: The Check Residuals of Volatility Estimation Panel

12 The Forecasting Panel

12.1 The Specify Forecast Panel

In this panel, see Figure 7, the user can either conduct rolling over, out-of-sample forecasts

or one-step ahead forecasts.

Select set of lags for forecasting / Edit sets of lags obtained from lag selection

This works in the same way as in the Estimation Panel, see Section 9.1.

Factor to multiply plug-in bandwidth with

This allows the user to modify the plug-in bandwidth for the one-period ahead forecast or

the rolling over, out-of-sample forecasts.

NAR SNAR SDNAR SHNAR

User-defined bandwidth (9) (45) (9) (9)

Rolling over, out-of-sample forecasts / One-step ahead forecast

You have either to mark the box Rolling over, out-of-sample forecasts or One-step

ahead forecast
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Figure 7: The Specify Forecast Panel

For further explanation of conducting Rolling over, out-of-sample forecasts, see Section

12.1.1, for details on an One-step ahead forecast see Section 12.1.2.

12.1.1 Rolling-over, out-of-sample forecasts

One splits the data set into a sample for estimation which contains the first T ′ values and

a sample of the remaining T − T ′ values for out-of-sample forecasting. The first forecast is

computed for yT ′+1 based on all observations available up to time T ′. In the next step one

forecasts yT ′+2 based on the sample {y1, . . . , yT ′+1}. This procedure is iterated until T − 1

observations are used and yT is forecasted. One then computes the rolling over one-step

ahead prediction error

PE =
1

T − T ′

T∑

j=T ′+1

(ŷj − yj)
2 . (73)

In the output this quantity is called Mean Squared Prediction Error (MSEP).

The use of rolling over predictions is to allow out-of-sample comparisons of the model with

other models. For example, one may compare the out-of-sample performance of a NAR model

with its linear AR counterpart. Therefore, rolling over predictions can also be conducted

for all linear models. Rolling over, out-of-sample predictions can also be computed for all

seasonal models: SNAR, SDNAR and SHNAR.
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One can also check if the rolling over, out-of-sample forecasts have a smaller variance than

the observations to predict,yj, j = T ′ + 1, . . . , T . At the end of each output one therefore

finds the measure

PE − V̂ ar(yj)

V̂ ar(yj)

Fraction of series for initial estimation

Here one specifies T ′ in (73) as Fraction of series ... ∗T .

Use set of lags specified above / Conduct lag selection for initial forecast only /

Conduct lag selection for every forecast

There are three modes on how to forecast the ŷj’s in the prediction error (73). In the

first mode activated by checking the Use set of lags specified above box, all forecasts

are computed by using a user-specified lag vector chosen in the Select set of lags for

forecasting box.

In the second mode, activated by the Conduct lag selection for initial forecast only, a

lag selection is conducted based on the initial estimation sample up to time T ′ and then this

selected lag vector is maintained for all remaining periods. The lag selection is conducted

with the parameters set in the The Specify Lag Selection Panel, see Section 8.1.

In the third mode, activated by the Conduct lag selection for every forecast box, a lag

selection is carried out for each forecast. The lag selection is conducted with the parameters

set in the The Specify Lag Selection Panel, see Section 8.1. The latter mode can be

computational very demanding if the sample size is large and/or a full search is conducted

for each lag selection.

12.1.2 One-step ahead forecast

The nonparametric one-period ahead forecast for a time series is obtained by estimating

f(xT+1) where this estimate is computed using the settings specified in the The Specify Lag

Selection Panel and the Specify Estimation Panel, see Sections 8.1 and 9.1, respectively.

For the NAR (1), SDNAR (3), and SHNAR (4) model the prediction interval is based on

(12) where
√· is replaced by

√
v̂(xT+1, · · · )/(T ĥh) + σ̂2(xT+1, · · · ). For the SNAR model

(2), it works similarly based on (46).

The confidence level is set in the Level of prediction interval box.

In practice, one is sometimes interested in h-step ahead forecasts. One can obtain such

forecasts if one requires for the first lag i1 = h. Then it is possible to construct xT+h =

(yT+h−i1 , . . . , yT+h−im) where the first component is just yT .
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12.2 The Output Window

The output is hoped to be self-explanatory.
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