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Finite order VAR models can be specified, estimated, analyzed and used for forecasting in

JMulTi . The relevant features will be described in the following.



1 The Basic Model

The basic VAR (vector autoregressive) model allowed for in JMulTi has the form
Y = A1y + -+ Ap—p + Bowy + - - 4+ By g + C Dy + uy, (1)

where y; = (y1¢, - - -, Yk¢)' is a vector of K observable endogenous variables, z; = (1, ..., zTan)
is a vector of M observable exogenous or unmodelled variables, D, contains all deterministic
variables which may consist of a constant, a linear trend, seasonal dummy variables as well
as user specified other dummy variables, and wu; is a K-dimensional unobservable zero mean
white noise process with positive definite covariance matrix E(w,u;) = ¥,. The A;, B; and
C' are parameter matrices of suitable dimension.

Various restrictions can be imposed on the parameter matrices. In particular, by imposing
zero restrictions, the right-hand side variables may not be the same in all equations. For
example, some equations may contain specific dummy or exogenous variables which do not
appear in other equations. Notice also that By = 0 may be specified if the exogenous
variables are to appear in lagged form only.

If no exogenous variables are present, (1) is a standard VAR(p) model with deterministic
terms D;. A univariate AR model is obtained if just one y variable is considered (K = 1).
Thus the present model framework can also be used for univariate or single equation analysis.
The AR or VAR order p may be chosen with the help of model selection criteria (see Sec. 3.1).

1.1 General Remark about the Implementation in JMulTi

VAR modeling in JMulTi is meant as a step by step procedure, where each task is related
to a special panel. Once a model has been estimated, the diagnostic tests as well as the
stability analysis and the structural analysis use the results from the estimation. If changes
in the model specification are made by the user, these results are deleted and the model has
to be reestimated. In other words, only results related to one model at a time are kept in
the system. Hence, there should not be confusion regarding the model setup while going
through the analysis. Sometimes certain menus or options are not available. This always

has a specific reason which is described in the respective help topic.



2 Estimation

2.1 Background

Estimation of the model (1) is done by feasible generalized least squares (GLS). For this
purpose the individual equations of the system are first estimated by OLS. The residuals
are used to estimate the white noise covariance matrix >, as ﬁ)u =71 23:1 ;. This
estimator is then used in the next step to compute the GLS estimator. If all regressors in all

equations are identical, the estimator reduces to an equation by equation OLS estimator.

2.2 Estimation Results in JMulTi

After the model is specified, see Sec. 3, it can be estimated by selecting the Menu
Estimation— Estimated Model. Output is generated in matrix and text form. Some statistics

related to the model are provided under Stats.
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Figure 1: Estimation Results in Matrix Form

The matrix panel displays first the endogenous, then exogenous and finally the deterministic
coefficients. It reflects the mathematical notation to make clear, what type of model was
actually estimated. By RIGHT clicking on the coefficients tables one can increase or decrease
the precision of the numbers. By clicking on the respective buttons it is possible to display

either the estimated coefficients, the standard deviations or the t-values.

The text panel displays the same information as the matrix panel but in a form that can be
saved as a text file by RIGHT clicking over the text area. In addition to that, it gives the
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Figure 2: Estimation Results in Text Form

det([g — A1z —--- — Ay2¥),  see Liitkepohl (1991), Ch. 2.

1.766l1

eigenvalues of the reverse characteristic polynomial, which is defined as:



3 Model Specification

Specifying a model of the form (1) in JMulTi involves the specification of a maximum lag
order for the endogenous and exogenous variables as well as placing zero restrictions on
the parameter matrices. While the user is expected to provide a maximum lag order for
the exogenous variables, model selection criteria are available to aid in the choice of the
VAR order p. Moreover a range of different procedures for imposing zero restrictions on the

parameter matrices are offered.

3.1 Model Selection Criteria
3.1.1 Background

The information criteria are computed for VAR models of the form
Y = Ay + -+ Ay + Boxy 4+ - - + Byry—g + CDy + 1y,

where y; is K-dimensional. The lag order of the exogenous variables x;, ¢, and the determin-
istic term D, have to be prespecified by the analyst. For a range of lag orders n the model
is estimated by OLS (applied to each equation separately). The optimal lag order is chosen

by minimizing one of the following information criteria:

AIC(n) = logdet(X,(n)) + anQ,

T
~ 2loglogT
HQ(n) = logdet(X,(n)) + %n[(z,
~ logT
SC(n) = log det(Sy(n)) + —- nk?

and
T+ n*

T —n*

FPE(n) = ( ) i det(,(n)),

where ¥,(n) is estimated by 7! Z;‘le iy, n* is the total number of parameters in each
equation of the model when n is the lag order of the endogenous variables, also counting the
deterministic terms and exogenous variables. The sample length is the same for all different
lag lengths and is determined by the maximum lag order. In other words, the number of
values set aside as presample values is determined by the maximum lag order considered
for the endogenous and exogenous variables. The lag length which minimizes the respective
information criterion is presented in the output of JMulTi . For more information on the

model selection criteria see Liitkepohl (1991).



3.1.2 Selection of Variables and Lags in JMulTi

To get to the specification panel you need to select Specification— Specify VAR Model. To
build a model of the form (1) in JMulTi you have to choose the variables you want to include
in your model first. By RIGHT clicking on the selected variables you may define exogenous
or deterministic variables. The selected user defined variables are shown in their correct

order in the available text fields.

You may also adjust the sample by editing the date text fields in the selection panel. To
include intercept, trend or seasonal dummies, you should use the available checkboxes. It is

possible, however, to add further deterministic variables defined by the user.

To select the endogenous lags it may be helpful to use the information criteria. To do
that, choose Compute Infocriteria. Then models with the selected variables are estimated.
The exogenous lags are taken as given. A search is performed over the lags of the endogenous

variables up to the maximum order.
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Figure 3: Specification of Variables, Sample Period and Lags



4 Subset Model Selection

4.1 Background

Zero restrictions may be imposed on the parameters of a model based on the t-ratios, for
example. Alternatively, restrictions for individual parameters or groups of parameters may
be based on model selection criteria. JMulTi offers suitable model selection procedures based
on single equation methods as well as an algorithm which considers the full system at once
in the elimination procedure.

To describe the single equation methods consider the equation
Y= 1wy + -+ Oy +ug, t=1,...T. (2)

For simplicity, all right-hand side variables are denoted by z; including exogenous and
deterministic variables as well as lagged endogenous variables. The optimal set of regressors

is then selected by minimizing a variable selection criterion of the general form
CR(i1, ..., i,) =log(SSE(i1,...,in)/T) + crn/T, (3)

where SSE(iy,...,i,) is the sum of squared errors obtained by including x;,...,2;,; in

the regression model (2) and c¢7 is a quantity which determines the specific criterion. More

precisely,
2 for AIC,
cr = ¢ 2loglogT for HQ,
log T’ for SC.

The following Sequential Elimination of Regressors (SER) strategy is available in
JMulTi : Sequentially delete those regressors which lead to the largest reduction of the se-
lected criterion until no further reduction is possible (see, e.g., Briiggemann and Liitkepohl
(2001) for more details). This strategy is equivalent to sequentially eliminating those re-
gressors with the smallest absolute values of ¢-ratios until all ¢-ratios (in absolute value) are
greater than some threshold value. Note that a single regressor is eliminated in each step
only. Then new t-ratios are computed for the reduced model.

Another possible sequential elimination algorithm implemented in JMulTi is a Top-Down
(TD) procedure which starts from the last regressor in the equation and checks if deleting
it improves the criterion value. In that case it is eliminated. Otherwise it is maintained.
Then the second last regressor is checked and so on. Obviously, this procedure depends on
the ordering of the variables in the model and, hence, in the equation.

There is also a System SER procedure implemented in JMulTi . In this procedure, in
each step the parameter with the smallest t-ratio is checked and potentially eliminated. The
decision regarding the elimination can be based on model selection criteria or a threshold
value is specified and only variables with a t-ratio larger than the threshold are maintained

eventually.



4.2 Specification of Subset Restrictions and Search Strategy in
JMulTi

To get to the subset specification panel you need to select Specification— Subset Restrictions.
There you see the full model defined in the selection panel, see Sec. 3, with the possibility to
include or exclude certain coefficients from the estimation. Again you may use the RIGHT

mouse click over the tables to set a property for whole matrices.

It is also possible to let JMulTi search for restrictions automatically. To do this you need to

define a search strategy. The following strategies are available:
System SER corresponds to 4.1 based on model selection criteria
SER /Testing Procedure see 4.1

Top Down see 4.1

System Testing Procedure corresponds to 4.1 based on a threshold value

For each strategy one may select the model selection criterium, for the System Testing
Procedure the threshold value can be defined. You may exclude or include certain variables
regardless of what the search procedure tells you by setting them either to 0 or to !. If you
do not use a search procedure but estimate the model with manually set restrictions, there is

no difference between ! and *. To see the results of the estimation with subset restrictions,

See 2.2.
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5 Residual Analysis

To access the residual analysis you have to specify and estimate a model first. It is then
possible to select the menu item Model Checking— Residual Analysis. In JMulTi the residual

analysis is split up into several different panels.

Disgnostic Tests | F'Iu:ntJ'.ﬂ-.ddI Correlation | Spectrum | Kernel Density

Figure 5: Panels for Residual Analysis

Diagnostic tests to convey a range of diagnostic tests, see Sec. 6

Plot/Add residuals can be plotted in several ways as well as added again to the set of

available series
Correlation for graphical autocorrelation and crosscorrelation analysis see Sec. 7

Spectrum it is possible to show the spectrum of the available residuals, see the respective

description in helpsection Initial Analysis

Kernel Density for a description of kernel density estimation, see the respective descrip-

tion in helpsection Initial Analysis



6 Diagnostic Tests

6.1 Background

In JMulTi | tests for residual autocorrelation, nonnormality and conditional heteroskedas-
ticity are available for diagnostic checking of estimated VAR models. It is also possible to
show the covariance and correlation matrix together with its determinant and the values of

model selection criteria associated with a given model.

Portmanteau test for autocorrelation

A portmanteau test for residual autocorrelation may be applied if a pure VAR process
possibly with subset restrictions but without exogenous variables has been fitted. The test

checks the null hypothesis
Hy: E(upu;_;) =0, i=1,...,h,

against the alternative that at least one autocovariance and, hence, one autocorrelation is

nonzero. The test statistic has the form

where C; = TS, 1 Ugtly_;. If the 4, are residuals from a stable VAR(p) process, ), has
an approximate x?(K?h — n*) distribution under the null hypothesis. Here n* denotes the
number of estimated VAR parameters, not counting the parameters related to the determin-
istic terms. The limiting x? distribution is strictly valid only if h — oo at a suitable rate

with growing sample size. The following adjusted portmanteau statistic is also available,

h

* 1 A —1A —
Qh:T2ZT_ tr(CiCo G t).

J=1

It may have better small sample properties than the unadjusted version.
The choice of h is important for the test performance. If h is chosen too small, the y?
approximation to the null distribution may be very poor whereas a large h may result in a

loss of power.

Breusch-Godfrey LM test for autocorrelation

The Breusch-Godfrey LM test for h-th order residual autocorrelation assumes a model

up = Biug_q + -+ - + Brug_p + errory
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and checks
Hy:Bi=---=B;,=0 vs. Hy:Bf#0or --- or B #0.
The auxiliary model
U =Ay+- -+ A+ Boxy+ -+ By + CDy+ Bity—y + - - -+ Bpty—p, + e, (4)

is considered. The model is estimated by the same method as the original model with ,,
t <0, replaced by zero. For example, for an unrestricted model multivariate LS estimation
is used, whereas for a subset model EGLS is used.

Denoting the estimation residuals by é; (¢t = 1,...,T), the residual covariance matrix esti-

mator obtained from the auxiliary models is

- 1<
_ - PN
Ye = T t2:1 €1€.

Moreover, reestimating the relevant auxiliary model without the lagged residuals ,_;, that
is, imposing the restriction Bj = --- = B} = 0, and denoting the resulting residuals by é~,

the corresponding covariance matrix estimator is

1 X

= ~ ~R/

Yp= E effelt.
t=1

]

The LM statistic is
LM, =T (K - tr(iglie)) ~ \2(hK?).

Edgerton and Shukur (1999) found that this test may be biased in small samples and there-

fore another statistic which may perform better is also given for full VAR models. It is of

the form - R2)1/r Nr—q
LMF}, = —m)/  Km
where ~
R2 =1— |§e|
' P
with

K*m2—4 \'? 1 1

n is the number of regressors in the original system and m = Kh is the number of regressors
added in the auxiliary system. The p-values of the statistic are based on an F(hK? [Nr—q])
distribution. Here [Nr — ¢] denotes the largest integer less than or equal to Nr — q.

11



Tests for nonnormality

The idea underlying the nonnormality tests is to transform the residual vector such that
its components are independent and then check the compatibility of the third and fourth

moments with those of a normal distribution. In a first step, the residual covariance matrix

T
w=T IZ 5)/

t=1

is estimated as

and the square root matrix S/ s computed. The tests for nonnormality may be based on

the skewness and kurtosis of the standardized residuals 45 = (@5, ..., 45,) = Su Y (4 — )

by = (bi1,...,big) with by =T~ Z as,)?

=1
and
bQ = (bgl, . ,bgK)/ with bgk =T Z ukt
t=1
Defining
= Tbb,/6
and
84 = T(bg 3K)/(b2 — 3K>/24,

where 3 = (3,...,3)" is a (K x 1) vector, a multivariate version of a Jarque-Bera statistic

is
JBg = 52+ s2.

The statistics s3 and s3 have y?(K) limiting distributions and J B has a x?(2K) asymptotic
distribution if the normality null hypothesis holds. The latter statistic was proposed by
Doornik and Hansen (1994).

An alternative way of computing standardized residuals was considered by Liitkepohl (1991,
Chapter 4) who uses a Choleski decomposition of the residual covariance matrix. Let P be
a lower triangular matrix with positive diagonal such that PP = iu Then the residuals
are standardized as 4 = P~'(4; — @). Computing the third and fourth moments as in
the foregoing as well as s2; and s?; corresponding to s3 and s3, respectively, gives JBL =
s3, + s3; with asymptotic x*(2K) distribution under normality. Again, s3; and s%, have
Y2(K) limiting distributions.

Corresponding tests based on the univariate residual series are also given.

ARCH-LM test

A multivariate ARCH-LM test may be based on the multivariate regression model

vech (@ ty) = By + Byvech(dy_11y ) + - - - + Byvech(ty_qu;_,) + errory, (5)

12



where vech is the column stacking operator for symmetric matrices which stacks the columns
from the main diagonal downwards, 3, is 3K (K + 1)-dimensional and the B; are (: K (K +
1) x 1K (K + 1)) coefficient matrices (j = 1,...,¢). The pair of hypotheses

Hy:By=---=B,=0 vs. Hy:By#0or --- or B, #0,
is tested. It is checked by the multivariate LM statistic
1
VARCHy(q) = 5TK(K +1R2,

where

Q) is the residual covariance matrix of the %K (K + 1)-dimensional regression model (5) and
Qo is the corresponding matrix with ¢ = 0. The statistic is similar to the one described by
Doornik and Hendry (1997, Sec. 10.9.2.4) and is based on a x?(¢K?(K +1)?/4) distribution.
Alternatively, an F version based on VARCH(q)/[¢K*(K + 1)?/4] may be used. In

addition, analogous univariate ARCH tests can be applied to the individual residual series.

6.2 Implementation of Diagnostic Tests in JMulTi

The following tests are available:

Portmanteau Test is only available for models without exogenous variables, see Sec. 6.1
Tests for nonnormality multivariate and univariate versions are given, see Sec. 6.1
ARCH-LM multivariate and univariate versions can be selected, see Sec. 6.1

LM tests for autocorr. see Sec. 6.1

13
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Figure 6: Diagnostic Tests in JMulTi
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7 Correlation Analysis

7.1 Autocorrelation

In JMulTi residual autocorrelations (ACSs) pu.n = Jun/Fu0 are obtained from

T
~ 1 A ~ ~ ~
Yu,h = T Z (Ut - U) (Ut—h - U)
t=h+1
where @ = T ZtT:1 U is the sample mean.

The partial autocorrelation (PAC) between w; and wu;_j is the conditional autocorrelation
given u;_1,...,u_pr1. The corresponding sample quantity a; is obtained as the OLS esti-

mator of the coefficient oy, in an autoregressive model
Uy =V + a1 + -+ + Qplle_p, + errory.

In JMulTi , OLS estimates are obtained for each h with sample size T'— h. The approximate
95% confidence bounds defined by +2/4/T are used. ACs and PACs are computed for the

single residual series.

7.2 Crosscorrelation

To get an overall picture of the correlation structure between the different residual series, a
crosscorrelation plot may be used. In JMulTi we follow the definition of the exact asymptotic
confidence intervals as described in Liitkepohl (1991), Sec. 4.4.2, for stable, unrestricted
VARs and Sec. 5.2.9 for stable VARs with parameter constraints. In case there are exogenous
variables in the model, only the standard £2/+/T confidence bounds are available.

7.3 Plotting Autocorrelations and Crosscorrelations in JMulTi

The available residuals are shown in the two lists from which the ones have to be selected
for which autocorrelations or crosscorrelations are desired. The selection is done as usual by

highlighting the residual series.

plotting AC/PAC select the desired series from the left list and press the Autocorrelation
button

plotting crosscorrelations select the desired combination of series in the two lists and

press the Crosscorrelation button

Number of lags the autocorrelation functions are computed up to the specified lag order

15



Squared residuals

the residuals are squared before the autocorrelations are computed,

exact asymptotic confidence intervals are not available then

Exact CI for crosscorr.

in case there are no exogenous variables, the exact asymptotic

95% confidence intervals are estimated, otherwise the standard 42/v/T confidence bounds

are used
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Figure 7: Correlation Analysis
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8 Stability Analysis

Parameter constancy throughout the sample period is a key assumptions in econometric
models. JMulTi offers several options to check its validity: recursive residuals and parameter
estimates, Chow tests and CUSUM tests.

8.1 Recursive parameter estimates

Recursive parameter estimates are a simple descriptive tool for assessing parameter stability.
They are obtained by simply estimating the model using only data fort = 1, ..., 7 and letting
7 vary from some small value to T', the end of the original sample. Thereby sequences of
coefficient estimates and estimates of the covariance matrix of the asymptotic distributions
are obtained. Here the same estimation method is used which is also used for the full sample
estimation. For example, for a subset VAR model, feasible GLS is used. The series of
estimates together with two-standard error bands are then plotted and can convey useful

information on the relative importance of new observations that are added to the sample.

Implementation in JMulTi

To get to the recursive parameter estimation panel you need to select Model Checking
— Stability Analysis — Recursive Coefficients. The full model as specified in the selection
panel is displayed for the user to choose the coefficients for which the graphs of recursive

estimates are to be produced. Several choices have to be made before displaying the graphs.
Start date marks the beginning of the recursive estimation
Each coeff in separate window displays each coefficient in a separate graph.

Group different lags in separate windows displays graphs with each containing all

the coefficients of a parameter matrix as shown in the selection panel.

8.2 Recursive residuals

The so-called recursive residuals are standardized 1-step forecast errors from a model esti-
mated on the basis of data up to period 7—1. They are computed for the individual equations
of a vector model separately. For a single equation model v, = x5 4+ u; (t =1,...,T) with
x; (M x 1), they are obtained as follows. Denoting by B(T) the OLS estimator based on the

first 7 observations only, that is,
T -1 T
o = (z ) e, 7z
t=1 t=1

17
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Figure 8: Recursive parameter estimates.

the recursive residuals are defined as

R , 5
'&(T): yT xT/B(T_l) T:M—i—l,...,T-

T 7—1 / -1 1/27
(1 + 2L (3072, we)) xT)

If x; consists of fixed, nonstochastic regressors, the forecast error y, — :L"TB(T_l) is known to

T—1

. -1 . .
have mean zero and variance o2 (1 + ! ( i1 xtxft) LET). Hence, the recursive residuals

have constant variance o2. Therefore, even if some of the regressors are stochastic, the
recursive residuals are often plotted with ”confidence intervals” #c;_, /20, bands, where

Ci—y/2 is the relevant quantile from a normal distribution table and
T
~D — ~2
Oy = (T_M) 1Zut
t=1

is the usual residual variance estimator based on the full sample. In other words, u; =
Y — :E;B(T). The recursive residuals exist only if the inverse of Y [ | xx) exists for all
T=M+1,...,T. Thus they may not be available in the presence of dummy variables.
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Implementation in JMulTi

To get to the recursive residuals panel you need to select Model Checking — Stability Analysis

— Recursive Residuals. Two choices can be made before displaying the graphs.

Standardize residuals are the recursive residuals divided by the estimated standard de-
viation &, based on the original OLS residuals. If checked, JMulTi displays the graphs of the
standardized residuals together with horizontal lines +1 and 42 to facilitate the visual in-
spection of the graphs. If this option is not selected, JMulTi displays the graphs of recursive

residuals together with ”confidence intervals”

Coverage probability of CIs allows you to choose the confidence level 90%, 95% or 99%

for the ”confidence intervals” around the recursive residuals

BT RI=E

Specification  Estimation  Model Checking  Structural Analysis  Forecasting

Chow Test I CusUn i Recursive Coefficients  Recursive Residuals ]

[ standardize residuals IEIS% _V_J sighificance level for Cls

ExEcute !

aulifan far conm eaurahe reslduniel soullan for fnoame

-0 -1 - 1 & 4 &
e e . L I O .

N -A-0-H 0 8 d bR

{45435 bytes  [Landscape [3555,2785 [3.2

Figure 9: Recursive residuals.

8.3 CUSUM tests

The cumulative sum of recursive residuals up to period 7 is

CUSUM, = Y i /6.

t=M+1
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It is plotted for 7 = M +1, ..., T together with the lines +c,[vT — M +2(r—M)//T — M],
where ¢, depends on the desired significance level of the resulting test. Brown, Durbin and
Evans (1975) show that if the CUSUMs wander beyond these lines, this is evidence against
structural stability of the underlying model.

Sometimes the CUSUM-of-squares plot based on

T

T
CUSUM ~5Q. = > (@) [ > (@)
t=M+1 t=M+1
results in a more powerful test. If the CUSUM — SQ. cross the lines given by +c¢ + (7 —
M) /(T — M), structural instability is indicated. The constant ¢ depends on the desired
significance level, the sample size T" and the number of regressors in the model. It was also

proposed by Brown et al. (1975).
In JMulTi CUSUM and CUSUM-SQ tests are provided for each equation separately.

Implementation in JMulTi

Handling of dummy variables Modifications are necessary if there are dummy variables
which are constant for the first 7 observations. In such a case the formula for the computation
of the recursive residuals does not apply anymore. In this case, following Brown et al. (1975),
the dummy is dropped from the estimation of the recursive residuals for the initial part of the
sample (now starting estimation not from observation M +1 but from M) and bringing it into
the regression when the parameter associated with the dummy regressor is estimable. Note
that there will be no residual for the period where the dummy is added to the regressors
because there is no meaningful forecast for the related period but the overall number of

residuals will still be the same because there is an additional residual at the beginning.

Significance level of the test allows you to choose the significance level 10%, 5% or 1%
for the CUSUM and CUSUM-of-squares tests

There is also a possibility to choose between the CUSUM and CUSUM-of-squares tests.

8.4 Chow tests

In JMulTi , break-point (BP), sample-split (SS) and Chow forecast (CF) tests are available.
They are applied to the full system rather than the individual equations. The BP Chow
test for checking for a structural break in period Tg proceeds as follows. The model un-
der consideration is estimated from the full sample of T" observations and from the first T}

and the last Ty observations, where T} < Tz and T, < T'— Tg. Denoting the resulting
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Figure 10: CUSUM and CUSUM-of-squares tests.

residuals by 1y, ﬁgl) and ﬁ§2), respectively, and using the notation i T-! ZtT:l Uyl

S = (T4 + T2>_1<Zt AR S Tyy1 Uelly), il Ty 1Ut ug) and 5(2) =
s Tyl uﬁ%t the BP test statistic is

Agp = (T1 + T3) log det 51,2 — T1 log det i(l) — Ty log det i(g) ~ Y2 (k).

Here k is the difference between the sum of the number of parameters estimated in the first
and last subperiods and the number of parameters in the full sample model. Note that also
the potentially different parameters in the white noise covariance matrix are counted. The

null hypothesis of constant parameters is rejected if Agp is large.

The SS statistic is derived under the assumption that the residual covariance matrix >, is
constant and checks against the alternative that the VAR coefficients may vary. It has the

form
)\SS = (Tl + TQ)[IOg det 51,2 — 10g det{(T1 + Tg)il(Tli(l) + Tgi(g))}] ~ X2<k7)

Here £~ is the difference between the sum of the number of coefficients estimated in the first
and last subperiods and the number of coefficients in the full sample model, not counting

the parameters in the white noise covariance matrix.
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The CF statistic is

1-(1—-R)»Y* Ns—gq
- . ~ F(Kk*,|[Ns —
(1_Rg)1/s Kk* ( k 7[ S Q]),

Acr =

where

K2k? -4 \'? Kk*

Here k; is the number of regressors in each equation of the time invariant model, k* the

number of forecast periods considered by the test (k* =T — T}), and

2 T s -1
R, =1- T Zal(Z)

This test is only available for full models and not for subset VARs. For the second degrees
of freedom, Ns — g, of the approximating F distribution, the integer part, [Ns — ¢, is used
whenever Ns — ¢ is not an integer. The CF test tests against the alternative that all coeffi-
cients including the residual covariance matrix may vary. It also rejects the null hypothesis

of constant parameters for large values of the test statistic.

Because the actual small sample distributions of the test statistics under Hy may be quite
different from the asymptotic x*- or F-distributions (see Candelon and Liitkepohl (2000)),
JMulTi offers bootstrap p-values. They are computed as follows. From the estimation resid-
uals 4, centered residuals @4y — 1, . . ., iy — @ are computed. Bootstrap residuals uy, ..., up
are generated by randomly drawing with replacement from the centered residuals. Based
on these quantities, bootstrap time series are calculated recursively starting from given pre-
sample values y_p41,...,%. Then the model is reestimated with and without allowing for
a break and bootstrap versions of the statistics of interest, say A\;p, Ag and A& are com-
puted. The p-values of the tests are estimated as the proportions of values of the bootstrap

statistics exceeding the corresponding test statistic based on the original sample.

Dealing with dummies In practice, one often has regression models with a constant,
where in addition several of the remaining regressor variables are dummies which might also
be constant either for the first or for the second part of the sample created by splitting
the sample at Tg. In order to avoid perfect collinearity between the regressors, JMulTi
deletes dummies automatically from the estimation of either the first or the second part of
the sample where appropriate with corresponding adjustment of the degrees of freedom if

necessary.

Specification in JMulTi

Chow tests can be performed for individual time periods or for a range of time points. In

the latter case the results are given in tables as well as graphs.
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Input

Break date allows you to specify a break period for which Chow tests are to be performed
Search over datapoints selecting this option allows you to perform Chow tests not only
for a single break date but over a range of the time points as specified in the adjacent menu

entry

Test range allows you to choose the starting and ending dates for the Search over data-

points procedure

Graph of bootstrapped p-values checking this option produces graphs of p-values of
the BP, SS and CF tests calculated for each break date in the specified range

Number of bootstrap replications specifies the number of replications used to construct
the empirical distribution function of the statistics. It has a substantial impact on the
required computation time. For reliable results it may be necessary to select a few thousand
replications although this may result in substantial waiting times

Output

break point Chow test (chow-bp) value of BP test statistic

boot p-val shows the bootstrapped p-value of the corresponding statistic

chi“2 p-val shows the p-values of the approximating y? distribution corresponding to the
BP statistic

df degrees of freedom of the corresponding y? distribution
sample split Chow test (chow-ss) value of SS test statistic
boot p-val shows the bootstrapped p-value of the corresponding statistic

chi“2 p-val shows the p-values of the approximating y? distribution corresponding to the
SS statistic

df degrees of freedom of the corresponding y? distribution

Chow forecast test (chow-fc) values of CF test statistics
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F p-val shows the p-values of the approximating F' distribution corresponding to the CF
statistic, only available if a full VAR model has been fitted

dfl numerator degrees of freedom of the corresponding F' distribution

df2 denominator degrees of freedom of the corresponding F' distribution, integer part of
Ns—q

~loix

Specification  Estimation  Madel Checking  Structural Analvsis  Forecasting

Chovwy Test I CLisum | Recursive Coetfficients I Recursive Residualsl

| 19731 break date [ search over datapoints Ieverv LI
| 100 number of bootstrap replications [¥ raph of bootstrapped pevalies

| 18631 startrange
i endirange

=
number of observations: 20
tested break date: 1873.1 (50 observations before break)
lags in WVAR: 2
chow_ss test statistic: 301.704364
chow_ss p-walue: 0.000000
chi~2 p-walue: 0. 000000
degrees of freedom: z1

chow_bp test statistic: 6. 806057

chow_bp p-walue: 0.0oo0oa
F p-wralue: 0. 000000
degrees of freedom: 114, 127
-
B | 5

Figure 11: Chow tests for a single break point.
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Figure 12: Chow tests for a range of possible break points.
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9 Causality Analysis

9.1 Background

Two types of causality tests are implemented in JMulTi , tests for Granger-causality and
tests for instantaneous causality. For both types of tests the vector of endogenous variables
is divided in two subvectors, y;; and o, with dimensions K; and Ks, respectively, so that
K = K + Kj. The subvector y; is said to be Granger-causal for yy; if it contains useful

information for predicting the latter set of variables. For testing this property, a model of

P
Yie | Z 011, Q24 Y1,t—i Uyt
- 9
Yot =1 | Q215 Qa2 Yo,t—i Ut

is considered. In this model setup, y;; is not Granger-causal for yy; if and only if

the form

+CD; +

CYQLZ‘:O, 221,2,7]?

Therefore this null hypothesis is tested against the alternative that at least one of the ap ;
is nonzero. A Wald test statistic, divided by the number of restrictions pKi K>, is used
in conjunction with an F(pK; Ky, KT — n*) distribution for testing the restrictions. Here
n* is the total number of parameters in the system (see Liitkepohl (1991)), including the
parameters of the deterministic term. Of course, the role of y;; and y,; can be reversed to
test Granger-causality from yo; to yys.
The test is problematic if some of the variables are nonstationary (integrated). In that
case the usual asymptotic distribution of the test statistic may not be valid under the null
hypothesis. Therefore, the test should be performed in the VEC framework if there are
integrated variables in the system of interest.
Instantaneous causality is characterized by nonzero correlation of uy; and uy;. Thus the null
hypothesis

Hy : E(uuy,) =0

is tested against the alternative of nonzero covariance between the two error vectors in
testing for instantaneous causality. The Wald test described in Liitkepohl (1991, Sec. 3.6.3)
is reported in JMulTi .

If there are exogenous variables in the model, the analysis is carried out conditionally on
these variables. In other words, a model

p
Yie | Z 11, Q24 Y1,t—i Uy
Yot =1 | Q21 Qa2 Y2.t—i Ut

is considered and the tests are carried out on the « coefficients and the covariance of uy; and

+ B()It + -+ Bq«rt—q + CDt +

w9 in this model.
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9.2 Causality Analysis in JMulTi

After the model is specified with a VAR order of at least one, see Sec. 3, the causality analysis
can be accessed by clicking on the menu Structural Analysis— Causality Tests. The endoge-
nous variables are shown in the list. There you can select from 1 up to K — 1 variables. The
respective Hy hypothesis then appears on the panel. The tests are always performed on the
unrestricted VAR part of the model even if a subset model is currently under consideration.
Restrictions for exogenous variables and deterministic terms are maintained, however. In
other words, if zero restrictions have been placed on the coefficient matrices of the exogenous

variables and/or the deterministic terms, these restrictions will be imposed in the causality

Specify HO Cause variables cons, incame
Etfect variables inwest
inweest

tests.

®%% Mon, 1 Mar 2004 11:54:19 #%%
TEST FOR GRANGER-CAUSALITY:
HO: "cons, income™ do not Granger-cause "inwvest”

Test statistic 1 = 1.6051
pwal-F( 1; 8, 222) = 0.1236

TEST FOR INSTANTANEOUS CAUSALITY:
HO: No instantaneous causalitcy between "conz, income™ and "inwvest”

15.1114

Test statistic: c =
= 0.0005

pval-Chif{ c; 2}

Figure 13: Causality Analysis in JMulTi
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10 Impulse Response Analysis

10.1 Background

Impulse response analysis can be used to analyze the dynamic interactions between the
endogenous variables of a VAR(p) process. In this analysis the exogenous and deterministic
variables are treated as fixed and may therefore be dropped from the system. In other words,
the part of the conditional mean of the endogenous variables attributable to these variables
is eliminated. The adjusted endogenous variables are now denoted by ;. If the process y; is

stationary (1(0)), it has a Wold moving average (MA) representation
Yr = Pour + Prug—1 + Poupo + -, (6)

where &y = [ and the &, can be computed recursively as
q)s:Z(I)SfjAju 821,2,...,
j=1

with &) = Ix and A; = 0 for j > p. The coefficients of this representation may be
interpreted as reflecting the responses to impulses hitting the system. The (i, j)th elements
of the matrices ®,, regarded as a function of s, trace out the expected response of y; ;1 to
a unit change in y;; holding constant all past values of ;. The elements of ®, represent the
impulse responses of the components of y; with respect to the u; innovations. These impulse
responses are sometimes called forecast error impulse responses because the u; are the 1-step
ahead forecast errors (see Liitkepohl (1991) for further discussion).

Although the Wold representation does not exist for nonstationary cointegrated processes,
the &, impulse response matrices can be computed in the same way for nonstationary pro-
cesses. Thus the forecast error impulse responses are available even if some variables are not
I(0). In contrast to the stationary case, impulses hitting a nonstationary system may have
permanent effects, however.

Because the underlying shocks are not likely to occur in isolation if the components of u,
are not instantaneously uncorrelated, that is, if ¥, is not diagonal, in many applications the
innovations of the VAR are orthogonalized using a Cholesky decomposition of the covariance
matrix Y,,. Denoting by P a lower triangular matrix such that ¥, = PP’, the orthogonalized

shocks are given by ¢, = P~!u,. Hence, in the stationary case we get,
vy = Woer + Vigi—y + -+, (7)

where U; = &, P (i =0,1,2,...). Here ¥q = P is lower triangular so that an € shock in the
first variable may have an instantaneous effect on all the variables, whereas a shock in the
second variable cannot have an instantaneous impact on y;; but only on the other variables

and so on.
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Notice that if a different ordering of the variables in the vector ¥, is chosen this may produce
different impulse responses. Hence, the effects of a shock may depend on the way the
variables are arranged in the vector 1;. In view of this nonuniqueness of the impulse responses

structural VAR analysis has been developed (see Sec. 13).

10.2 Impulse Response Analysis in JMulTi

To access the Impulse Response Panel, select Structural Analysis— Impulse Response Anal-
ysis from the menu. It is possible to create orthogonalized impulse responses based on an
innovation of size one standard deviation in the transformed model as well as forecast error

variance impulse responses based on a unit innovation in the original model.

First you have to select the impulse and response variables as well as the desired confidence
interval from the tables. Then you can generate text or graphical output. The confidence

intervals are only available if they have been generated before, see Sec. 11.

Specify IRA  Display Impulse Responses i

Aocum.Resp.

Configure Plot i
Display R I

v Crthogonal IR

[ cons

[ income

[~ Forecast error IR

25.5177 21
525, 38.1754] [ -4.503¢

17 point estimate 20.2]
CI a) [ 4.2891, :

15 point estimate 20,28 25.3560 21
CI a) [ 4.1527, : 996, 35.5387] [ -4.555:
12 point estimate 20032 25,1758 21
CI a) [ 4.l01z, 200, 35.8866] [ -4.599¢
20 point estimate 20, 40 I 25,0035 21
CI a) [ 4.0427, : e 252, 39.2609] [ -4.612¢

Figure 14: Impulse Response Analysis in JMulTi
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11 Bootstrapping Impulse Responses

11.1 Background

In practice, the impulse responses are computed from the estimated VAR coefficients and
bootstrap methods are available in JMulTi to construct confidence intervals (CIs) which
reflect the estimation uncertainty. Alternative bootstrap approaches are implemented. They
proceed as follows:

First the model of interest is estimated. Denoting the estimation residuals by 4, the centered
residuals @i, —1, . . ., ip— are obtained. Then bootstrap residuals u?, . .., wp are generated by
randomly drawing with replacement from the centered residuals. These quantities are used to
compute bootstrap time series recursively starting from given presample values y_, 11, ..., %o
and fixing the exogenous and deterministic terms. The model of interest is then reestimated
and bootstrap versions of the quantities of interest are computed. Repeating these steps a
large number of times, bootstrap distributions of the quantities of interest are obtained.

In the following the symbols ¢, gzg and 923* denote some general impulse response coefficient, its
estimator implied by the estimators of the model coefficients and the corresponding bootstrap

estimator, respectively. The following bootstrap Cls are implemented in JMulTi :

e Standard percentile interval

It is determined as
Cls = [55/2: 51—/
where s7 , and s{;_, /2) are the v/2- and (1 — 7/2)-quantiles, respectively, of the boot-

strap distribution of ¢*. The interval C'lg is the percentile confidence interval described,
e.g., by Efron and Tibshirani (1993).

e Hall’s percentile interval

It is determined as

Cly = Qﬁ - t?l—y/2)7 Qb - t:ky/Q )
where t? Aand tfl—v /9y are the /2~ and (1 —v/2)-quantiles, respectively, of the distri-
bution of ¢* — ¢ (see Hall (1992)).

o Hall’s studentized interval

It is determined by using bootstrap quantiles ti’;Q and t}* /9 from the distribution of
(6" — ¢)/(Var(¢*))"2,
Clsi = | = t{i o) (aH(0))/2, & =t (Va1(0)) /2| .

In this approach the variances are estimated by a bootstrap within each bootstrap

replication. Therefore it is rather demanding in terms of computing time.

Unfortunately, the bootstrap does not always result in CIs with the desired coverage even

asymptotically. For a critical discussion see Benkwitz, Liitkepohl and Neumann (2000).
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11.2 Bootstrapping Confidence Intervals in JMulTi

Because bootstrapping confidence intervals for impulse responses may be time consuming,
it is in a separate panel, where the relevant parameters can be adjusted. The generated Cls
are saved until you either specify a different model or you increase the number of lags for

the impulse response analysis.

Use this seed you may use a distinct seed value to initialize the random number generator
with a certain value, if disabled, the random number generator is initialized each time it is

invoked with a different value dependent on the system time

Number of bootstrap replications this value affects computing time, for reliable Cls

the number still has to be large, say a few thousand

Number of periods the number of periods for which the Cls as well as the impulse re-

sponses are computed, increasing this value deletes already computed Cls

Select the type of CI you want to generate from the available combo box. There are two pan-
els available. For Efron & Hall Bootstrap Percentile CI, the Standard percentile interval, see
Sec. 11.1, as well as Hall’s percentile interval, see Sec. 11.1, are generated. The other option
is to generate Studentized Hall Bootstrap CI, see Sec. 11.1, with the additional computation

of the variance in each step.

|Etron & Hall Bootstrap Percentile Ci =

T Configure Percentile Cl Bootstrap-)

Clocoverage (0 =c = 1] !III.EIS

Mumber of bootstrap replications 100

[T Lze thiz zeed (0=8=2147 4533 647 I:

Figure 15: Bootstrapping Efron & Hall Confidence Intervals in JMulTi
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|Studentized Hall Bootstrap CI |

Configure Stuodentized Cl Bootstrap |

Clocoverage (D =c = 1] IIII.EIS

Mumber of bootstrap replications 100

[T Use this =eed (0=z=2147 453 647 II

Settings for hoot=trap of standard error

Mumber af bootstrap replications 100

[T Lze this seed (0===2147453 647 II

Figure 16: Bootstrapping Hall’s Studentized Confidence Intervals in JMulTi
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12 Forecast Error Variance Decomposition

12.1 Background

Forecast error variance decompositions (FEVDs) are popular tools for interpreting VAR
models. Denoting the 75th element of the orthogonalized impulse response coefficient matrix

VU,, by v;j, the variance of the forecast error
Yk, T+h — Yk, T+h|T

18
h—1 K

or(h) =) ( il,n +eoet wl%K,n) = Z(Q/Jij,o +oe Q/lej,h—ﬁ-

n=0 7j=1
The term (Y7, o+ - - + 1, ,,_) is interpreted as the contribution of variable j to the h-step
forecast error variance of variable k. Dividing the above terms by o2(h) gives the percentage

contribution of variable 7 to the h-step forecast error variance of variable k,

wij(h) = (Wijo + -+ Wijn1)/ok(h)

(see Liitkepohl (1991)). In JMulTi these quantities, computed from estimated parameters,

are reported for various forecast horizons.

12.2 Implementation in JMulTi

To access the FEVD panel after a model was estimated, select Structural Analysis—FEV
Decomposition from the menu. You may then select the variables which should be decom-
posed from the table. A plot is created, which presents the contributions of each variable to
the FEV of the selected variable in a bar diagram. Text output is also provided. It can be
saved by RIGHT clicking over the text area.
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13 SVAR Analysis

The SVAR (structural vector autoregressive) model can be used to identify the shocks to be
traced in an impulse response analysis by imposing restrictions on the matrices A and B in

the model form
Ay, = ATyH 4+t A;'ytfp + B(’)"xt 4+ B:;xt,q + C*D; + Bgy (8)

Here the structural errors ¢; are assumed to be white noise with (0, /x). The coefficient
matrices are structural coefficients which may be different from the reduced form coefficients
in (1). The point of departure for a structural analysis is a reduced form model, however.
Therefore a reduced form model has to be specified before the SVAR analysis can be entered.
In the SVAR analysis only restrictions for A and B can be added. The reduced form residual
uy is recovered from the structural model as v, = A~'Be, so that ¥, = A"'BB'A-Y".

JMulTi offers three versions of the AB model, an A model where B = Ik, a B model where
A = Ik, and a general AB model where restrictions can be placed on both matrices. In
addition a Blanchard-Quah model with restrictions placed on the long-run effects of shocks
is available (see below).

For the A model and for the B model at least K (K — 1)/2 restrictions have to be imposed
for identification of a system with K endogenous variables. For the AB model, at least
K? + K(K —1)/2 restrictions are needed (see Breitung, Briiggemann and Liitkepohl (2004)
for examples).

Estimation is done by maximum likelihood using a scoring algorithm (see Amisano and
Giannini (1997) or Breitung et al. (2004)). If the algorithm does not converge, some manual
fine tuning may be necessary. If an overidentified model is estimated, the value of a likelihood

ratio statistic
LR=T (log det(X7) — log det(iu)>

is also reported. Here ¥, is the ML estimator of the reduced form model and X7 is the
corresponding estimator obtained from the restricted structural form estimation.

In the Blanchard-Quah model A = I and the matrix of long-run effects
(Ig — Ay —---—A,)"'B

is assumed to be lower-triangular. In other words, the second residual cannot have a long-run
impact (has a zero long-run impact) on the first variable, the third residual cannot have a
long-run impact on the first and second variable, etc.. To ensure that plausible restrictions
are obtained it may be necessary to adjust the order of the variables. This has to be done
in the Specification panel. Estimation of the Blanchard-Quah model is done by a Choleski

decomposition of the matrix
U — Ay — o — AU (T — AL — oo AT
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where a hat indicates a reduced form estimate.

Once an SVAR model has been estimated, SVAR IRA (impulse response analysis) and SVAR
FEVD (forecast error variance decomposition) are activated and can be used as described
in Sec. 10, 11 and 12.

13.1 Implementation in JMulTi

To access the SVAR analysis, estimate a reduced form VAR model first and then go to
SVAR—SVAR FEstimation. Then choose between the Blanchard-Quah and AB models. If
the Blanchard-Quah model is chosen, restrictions are imposed automatically and the model
can be estimated directly. If standard errors for the estimated long-run coefficients are
desired, they can be computed by a bootstrap. Choose the number of bootstrap replications
and select the appropriate button to display the estimates.

If an AB model is chosen, specify the kind of model you wish to work with (A, B or AB) and
impose the restrictions by clicking on the relevant elements of the matrices activated in the
panel. You can also edit coefficients manually after checking the appropriate box. The model
will be estimated upon pressing the Frecute button. If there are convergence problems, press
the Optimization Settings button and adjust the settings in the panel. Remember, however,
that convergence problems can also be due to inappropriate restrictions.

As mentioned earlier, once the SVAR model has been estimated successfully, SVAR IRA
and SVAR FEVD are activated. They can be accessed by going to SVAR—SVAR IRA or
SVAR—SVAR FEVD.
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14 Forecasting with VAR Processes

14.1 Background

Forecasts are based on conditional expectations assuming independent white noise u;. In

other words, an h-step forecast at time 7' is
Yrinr = Ayren—yr + -+ Apyrih—pir + Boxrin + -+ Byrrygn—g + CDpyp. (9)
The forecasts are computed recursively for h = 1,2, ..., starting with
yroyr = Awyr + -+ Apyryip + Borrgr + - + Berri g + CDryy

for h = 1. Notice that values for the exogenous variables have to be supplied for the forecast
period.
The corresponding forecast errors are

Yr+n — Yranr = Urtn + Prurip1 + -+ Ppoqury,

where

O, =) O, A;, s=12...,
j=1

with ®y = Ix and A; = 0 for j > p (see Liitkepohl (1991)). Thus, the forecast errors
have zero mean and, hence, the forecasts are unbiased. Moreover the joint forecast error
covariance matrix for all forecasts up to horizon h is

/

I 0 ... 0 I 0
Y141 — Y117 o, I 0 1 I
Cov = . . . (Eu X Ih)

(10)
Assuming normally distributed disturbances, these results can be used for setting up fore-
cast intervals for any linear combination of these forecasts. In particular, if any of the
variables is in first differenced form, a forecast of the undifferenced variable can be obtained
by integration. E.g., if y, = Az = 2 — 21, 2r4nr = Yrnr + -+ Y + 21

For the vy, forecast intervals may be setup as

[yk,TJrth — 01—7/20k(h)> Yk, T+h|T + 0177/201@(}0],

where ¢;_ 5 is the (1 —2)100 percentage point of the standard normal distribution, i rynr
denotes the kth component of yrinr and oy(h) is the standard deviation of the h-step
forecast error for the kth component of 1;. Forecast intervals of linear combinations of
Yr+1, - - -, Yr+n May be set up analogously, using (10) for determining the relevant standard

deviation.
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In practice, the forecasts are based on estimated parameters. This feature may be taken into
account by correcting the forecast error variances accordingly, as in Liitkepohl (1991), Sec.
3.5. Notice, however, that the underlying asymptotic theory assumes a stable, stationary

process.

14.2 Forecasting in JMulTi

After a model was estimated, the forecast panel is accessible by selecting Forecasting— Forecast
Variables from the menu. It is possible to generate level forecasts as well as level forecasts

given that the underlying series is in first differences.

Horizon determines for how many periods forecasts should be computed

CI coverage (%) allows you to choose the coverage level of the forecast intervals
Variables to forecast select the variables that are to be forecasted from the list

Deterministics Because deterministic variables need to be available for each period T" +
1,...,,T + h, this table presents the available values that are extrapolated from the actual
deterministic series. Extrapolation works well for trend, intercept and seasonal dummies.
Other deterministic variables are set to 0, shift dummies are recognized and set to the value
they had in T'. It is possible to edit the values used for the forecast. If the values of the
deterministic series are available for some or all of the h forecast periods, these values are

automatically used.

Exogenous Because exogenous variables need to be available for each forecast period
T+ 1,...,T + h, this table presents the values used. If values of the exogenous series are
available for some or all of the h forecast periods, these values are automatically used. If
there are no values available they are automatically set to 0 and have to be edited manually

by the user.

Asymptotic CI If selected, the exact asymptotic forecast confidence intervals are esti-
mated, see Liitkepohl (1991), Sec. 5.2.6. and Sec. 10.5

Start date of plot (level) adjusts the date from which the original series should be
graphed including the computed forecast. This date does not affect undifferenced forecasts

which are only graphed from time T

Forecast generates a forecast resulting in a graph as well as text output on the Text tab
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Undifferenced Forecast generates a level forecast assuming that the underlying series

are in first differences. Exact asymptotic Cls are not available if this option is chosen

Configure Undifferenced Forecast to generate an undifferenced forecast, the values of
the endogenous variables in levels for time ¢ have to be given. This panel presents a selection
mechanism that allows either to specify the original level series or to manually edit the values

needed

Specify Forecast l Text (zavedprint) |

Horizon 11 o | coverage [95] 195 ‘ariahles to forecast

Deterministics | CONST|
|1983 01

Time Sarles Morgeosls (¢ 96.0%)

Exogenous no data |

Start date of plot (levels) !1 g1 o2 Lindifferenced Forecast I

| | Asymptatic Cl Forecast I Configure Undifferenced Forecast I

Figure 18: Forecasting in JMulTi
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