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Finite order VAR models can be specified, estimated, analyzed and used for forecasting in

JMulTi . The relevant features will be described in the following.
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1 The Basic Model

The basic VAR (vector autoregressive) model allowed for in JMulTi has the form

yt = A1yt−1 + · · ·+ Apyt−p +B0xt + · · ·+Bqxt−q + CDt + ut, (1)

where yt = (y1t, . . . , yKt)
′ is a vector ofK observable endogenous variables, xt = (x1t, . . . , xMt)

′

is a vector of M observable exogenous or unmodelled variables, Dt contains all deterministic

variables which may consist of a constant, a linear trend, seasonal dummy variables as well

as user specified other dummy variables, and ut is a K-dimensional unobservable zero mean

white noise process with positive definite covariance matrix E(utu
′
t) = Σu. The Ai, Bj and

C are parameter matrices of suitable dimension.

Various restrictions can be imposed on the parameter matrices. In particular, by imposing

zero restrictions, the right-hand side variables may not be the same in all equations. For

example, some equations may contain specific dummy or exogenous variables which do not

appear in other equations. Notice also that B0 = 0 may be specified if the exogenous

variables are to appear in lagged form only.

If no exogenous variables are present, (1) is a standard VAR(p) model with deterministic

terms Dt. A univariate AR model is obtained if just one y variable is considered (K = 1).

Thus the present model framework can also be used for univariate or single equation analysis.

The AR or VAR order p may be chosen with the help of model selection criteria (see Sec. 3.1).

1.1 General Remark about the Implementation in JMulTi

VAR modeling in JMulTi is meant as a step by step procedure, where each task is related

to a special panel. Once a model has been estimated, the diagnostic tests as well as the

stability analysis and the structural analysis use the results from the estimation. If changes

in the model specification are made by the user, these results are deleted and the model has

to be reestimated. In other words, only results related to one model at a time are kept in

the system. Hence, there should not be confusion regarding the model setup while going

through the analysis. Sometimes certain menus or options are not available. This always

has a specific reason which is described in the respective help topic.
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2 Estimation

2.1 Background

Estimation of the model (1) is done by feasible generalized least squares (GLS). For this

purpose the individual equations of the system are first estimated by OLS. The residuals

are used to estimate the white noise covariance matrix Σu as Σ̂u = T−1
∑T

t=1 ûtû
′
t. This

estimator is then used in the next step to compute the GLS estimator. If all regressors in all

equations are identical, the estimator reduces to an equation by equation OLS estimator.

2.2 Estimation Results in JMulTi

After the model is specified, see Sec. 3, it can be estimated by selecting the Menu

Estimation→Estimated Model. Output is generated in matrix and text form. Some statistics

related to the model are provided under Stats.

Figure 1: Estimation Results in Matrix Form

The matrix panel displays first the endogenous, then exogenous and finally the deterministic

coefficients. It reflects the mathematical notation to make clear, what type of model was

actually estimated. By RIGHT clicking on the coefficients tables one can increase or decrease

the precision of the numbers. By clicking on the respective buttons it is possible to display

either the estimated coefficients, the standard deviations or the t-values.

The text panel displays the same information as the matrix panel but in a form that can be

saved as a text file by RIGHT clicking over the text area. In addition to that, it gives the
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Figure 2: Estimation Results in Text Form

modulus of the eigenvalues of the reverse characteristic polynomial, which is defined as:

det(IK − A1z − · · · − Apz
p), see Lütkepohl (1991), Ch. 2.
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3 Model Specification

Specifying a model of the form (1) in JMulTi involves the specification of a maximum lag

order for the endogenous and exogenous variables as well as placing zero restrictions on

the parameter matrices. While the user is expected to provide a maximum lag order for

the exogenous variables, model selection criteria are available to aid in the choice of the

VAR order p. Moreover a range of different procedures for imposing zero restrictions on the

parameter matrices are offered.

3.1 Model Selection Criteria

3.1.1 Background

The information criteria are computed for VAR models of the form

yt = A1yt−1 + · · ·+ Anyt−n +B0xt + · · ·+Bqxt−q + CDt + ut,

where yt is K-dimensional. The lag order of the exogenous variables xt, q, and the determin-

istic term Dt have to be prespecified by the analyst. For a range of lag orders n the model

is estimated by OLS (applied to each equation separately). The optimal lag order is chosen

by minimizing one of the following information criteria:

AIC(n) = log det(Σ̃u(n)) +
2

T
nK2,

HQ(n) = log det(Σ̃u(n)) +
2 log log T

T
nK2,

SC(n) = log det(Σ̃u(n)) +
log T

T
nK2

and

FPE(n) =

(
T + n∗

T − n∗

)K

det(Σ̃u(n)),

where Σ̃u(n) is estimated by T−1
∑T

t=1 ûtû
′
t, n

∗ is the total number of parameters in each

equation of the model when n is the lag order of the endogenous variables, also counting the

deterministic terms and exogenous variables. The sample length is the same for all different

lag lengths and is determined by the maximum lag order. In other words, the number of

values set aside as presample values is determined by the maximum lag order considered

for the endogenous and exogenous variables. The lag length which minimizes the respective

information criterion is presented in the output of JMulTi . For more information on the

model selection criteria see Lütkepohl (1991).
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3.1.2 Selection of Variables and Lags in JMulTi

To get to the specification panel you need to select Specification→Specify VAR Model. To

build a model of the form (1) in JMulTi you have to choose the variables you want to include

in your model first. By RIGHT clicking on the selected variables you may define exogenous

or deterministic variables. The selected user defined variables are shown in their correct

order in the available text fields.

You may also adjust the sample by editing the date text fields in the selection panel. To

include intercept, trend or seasonal dummies, you should use the available checkboxes. It is

possible, however, to add further deterministic variables defined by the user.

To select the endogenous lags it may be helpful to use the information criteria. To do

that, choose Compute Infocriteria. Then models with the selected variables are estimated.

The exogenous lags are taken as given. A search is performed over the lags of the endogenous

variables up to the maximum order.

Figure 3: Specification of Variables, Sample Period and Lags
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4 Subset Model Selection

4.1 Background

Zero restrictions may be imposed on the parameters of a model based on the t-ratios, for

example. Alternatively, restrictions for individual parameters or groups of parameters may

be based on model selection criteria. JMulTi offers suitable model selection procedures based

on single equation methods as well as an algorithm which considers the full system at once

in the elimination procedure.

To describe the single equation methods consider the equation

yt = θ1x1t + · · ·+ θNxNt + ut, t = 1, . . . , T. (2)

For simplicity, all right-hand side variables are denoted by xkt including exogenous and

deterministic variables as well as lagged endogenous variables. The optimal set of regressors

is then selected by minimizing a variable selection criterion of the general form

CR(i1, . . . , in) = log(SSE(i1, . . . , in)/T ) + cTn/T, (3)

where SSE(i1, . . . , in) is the sum of squared errors obtained by including xi1t, . . . , xint in

the regression model (2) and cT is a quantity which determines the specific criterion. More

precisely,

cT =





2 for AIC,

2 log log T for HQ,

log T for SC.

The following Sequential Elimination of Regressors (SER) strategy is available in

JMulTi : Sequentially delete those regressors which lead to the largest reduction of the se-

lected criterion until no further reduction is possible (see, e.g., Brüggemann and Lütkepohl

(2001) for more details). This strategy is equivalent to sequentially eliminating those re-

gressors with the smallest absolute values of t-ratios until all t-ratios (in absolute value) are

greater than some threshold value. Note that a single regressor is eliminated in each step

only. Then new t-ratios are computed for the reduced model.

Another possible sequential elimination algorithm implemented in JMulTi is a Top-Down

(TD) procedure which starts from the last regressor in the equation and checks if deleting

it improves the criterion value. In that case it is eliminated. Otherwise it is maintained.

Then the second last regressor is checked and so on. Obviously, this procedure depends on

the ordering of the variables in the model and, hence, in the equation.

There is also a System SER procedure implemented in JMulTi . In this procedure, in

each step the parameter with the smallest t-ratio is checked and potentially eliminated. The

decision regarding the elimination can be based on model selection criteria or a threshold

value is specified and only variables with a t-ratio larger than the threshold are maintained

eventually.
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4.2 Specification of Subset Restrictions and Search Strategy in

JMulTi

To get to the subset specification panel you need to select Specification→Subset Restrictions.

There you see the full model defined in the selection panel, see Sec. 3, with the possibility to

include or exclude certain coefficients from the estimation. Again you may use the RIGHT

mouse click over the tables to set a property for whole matrices.

It is also possible to let JMulTi search for restrictions automatically. To do this you need to

define a search strategy. The following strategies are available:

System SER corresponds to 4.1 based on model selection criteria

SER/Testing Procedure see 4.1

Top Down see 4.1

System Testing Procedure corresponds to 4.1 based on a threshold value

For each strategy one may select the model selection criterium, for the System Testing

Procedure the threshold value can be defined. You may exclude or include certain variables

regardless of what the search procedure tells you by setting them either to 0 or to !. If you

do not use a search procedure but estimate the model with manually set restrictions, there is

no difference between ! and *. To see the results of the estimation with subset restrictions,

See 2.2.

Figure 4: Specification of Subset Restrictions and Search Strategy
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5 Residual Analysis

To access the residual analysis you have to specify and estimate a model first. It is then

possible to select the menu item Model Checking→Residual Analysis. In JMulTi the residual

analysis is split up into several different panels.

Figure 5: Panels for Residual Analysis

Diagnostic tests to convey a range of diagnostic tests, see Sec. 6

Plot/Add residuals can be plotted in several ways as well as added again to the set of

available series

Correlation for graphical autocorrelation and crosscorrelation analysis see Sec. 7

Spectrum it is possible to show the spectrum of the available residuals, see the respective

description in helpsection Initial Analysis

Kernel Density for a description of kernel density estimation, see the respective descrip-

tion in helpsection Initial Analysis
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6 Diagnostic Tests

6.1 Background

In JMulTi , tests for residual autocorrelation, nonnormality and conditional heteroskedas-

ticity are available for diagnostic checking of estimated VAR models. It is also possible to

show the covariance and correlation matrix together with its determinant and the values of

model selection criteria associated with a given model.

Portmanteau test for autocorrelation

A portmanteau test for residual autocorrelation may be applied if a pure VAR process

possibly with subset restrictions but without exogenous variables has been fitted. The test

checks the null hypothesis

H0 : E(utu
′
t−i) = 0, i = 1, . . . , h,

against the alternative that at least one autocovariance and, hence, one autocorrelation is

nonzero. The test statistic has the form

Qh = T

h∑
j=1

tr(Ĉ ′jĈ
−1
0 ĈjĈ

−1
0 )

where Ĉi = T−1
∑T

t=i+1 ûtû
′
t−i. If the ût are residuals from a stable VAR(p) process, Qh has

an approximate χ2(K2h − n∗) distribution under the null hypothesis. Here n∗ denotes the

number of estimated VAR parameters, not counting the parameters related to the determin-

istic terms. The limiting χ2 distribution is strictly valid only if h → ∞ at a suitable rate

with growing sample size. The following adjusted portmanteau statistic is also available,

Q∗h = T 2

h∑
j=1

1

T − j
tr(Ĉ ′jĈ

−1
0 ĈjĈ

−1
0 ).

It may have better small sample properties than the unadjusted version.

The choice of h is important for the test performance. If h is chosen too small, the χ2

approximation to the null distribution may be very poor whereas a large h may result in a

loss of power.

Breusch-Godfrey LM test for autocorrelation

The Breusch-Godfrey LM test for h-th order residual autocorrelation assumes a model

ut = B∗
1ut−1 + · · ·+B∗

hut−h + errort
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and checks

H0 : B∗
1 = · · · = B∗

h = 0 vs. H1 : B∗
1 6= 0 or · · · or B∗

h 6= 0.

The auxiliary model

ût = A1yt−1 + · · ·+ Apyt−p +B0xt + · · ·+Bqxt−q + CDt +B∗
1 ût−1 + · · ·+B∗

hût−h + et (4)

is considered. The model is estimated by the same method as the original model with ût,

t ≤ 0, replaced by zero. For example, for an unrestricted model multivariate LS estimation

is used, whereas for a subset model EGLS is used.

Denoting the estimation residuals by êt (t = 1, . . . , T ), the residual covariance matrix esti-

mator obtained from the auxiliary models is

Σ̃e =
1

T

T∑
t=1

êtê
′
t.

Moreover, reestimating the relevant auxiliary model without the lagged residuals ût−i, that

is, imposing the restriction B∗
1 = · · · = B∗

h = 0, and denoting the resulting residuals by êR
t ,

the corresponding covariance matrix estimator is

Σ̃R =
1

T

T∑
t=1

êR
t ê

R′
t .

The LM statistic is

LMh = T
(
K − tr(Σ̃−1

R Σ̃e)
)
≈ χ2(hK2).

Edgerton and Shukur (1999) found that this test may be biased in small samples and there-

fore another statistic which may perform better is also given for full VAR models. It is of

the form

LMFh =
1− (1−R2

r)
1/r

(1−R2
r)

1/r
· Nr − q

Km

where

R2
r = 1− |Σ̃e|

|Σ̃R|
with

r =

(
K2m2 − 4

K2 +m2 − 5

)1/2

, q =
1

2
Km− 1, N = T −K −m− 1

2
(K −m+ 1),

n is the number of regressors in the original system and m = Kh is the number of regressors

added in the auxiliary system. The p-values of the statistic are based on an F (hK2, [Nr−q])
distribution. Here [Nr − q] denotes the largest integer less than or equal to Nr − q.
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Tests for nonnormality

The idea underlying the nonnormality tests is to transform the residual vector such that

its components are independent and then check the compatibility of the third and fourth

moments with those of a normal distribution. In a first step, the residual covariance matrix

is estimated as

Σ̃u = T−1

T∑
t=1

(ût − û)(ût − û)′

and the square root matrix Σ̃
1/2
u is computed. The tests for nonnormality may be based on

the skewness and kurtosis of the standardized residuals ûs
t = (ûs

1t, . . . , û
s
Kt)

′ = Σ̃
−1/2
u (ût− û):

b1 = (b11, . . . , b1K)′ with b1k = T−1

T∑
t=1

(ûs
kt)

3

and

b2 = (b21, . . . , b2K)′ with b2k = T−1

T∑
t=1

(ûs
kt)

4.

Defining

s2
3 = Tb′1b1/6

and

s2
4 = T (b2 − 3K)′(b2 − 3K)/24,

where 3K = (3, . . . , 3)′ is a (K × 1) vector, a multivariate version of a Jarque-Bera statistic

is

JBK = s2
3 + s2

4.

The statistics s2
3 and s2

4 have χ2(K) limiting distributions and JBK has a χ2(2K) asymptotic

distribution if the normality null hypothesis holds. The latter statistic was proposed by

Doornik and Hansen (1994).

An alternative way of computing standardized residuals was considered by Lütkepohl (1991,

Chapter 4) who uses a Choleski decomposition of the residual covariance matrix. Let P̃ be

a lower triangular matrix with positive diagonal such that P̃ P̃ ′ = Σ̃u. Then the residuals

are standardized as ûs
t = P̃−1(ût − ¯̂u). Computing the third and fourth moments as in

the foregoing as well as s2
3L and s2

4L corresponding to s2
3 and s2

4, respectively, gives JBL
K =

s2
3L + s2

4L with asymptotic χ2(2K) distribution under normality. Again, s2
3L and s2

4L have

χ2(K) limiting distributions.

Corresponding tests based on the univariate residual series are also given.

ARCH-LM test

A multivariate ARCH-LM test may be based on the multivariate regression model

vech(ûtû
′
t) = β0 +B1vech(ût−1û

′
t−1) + · · ·+Bqvech(ût−qû

′
t−q) + errort, (5)

12



where vech is the column stacking operator for symmetric matrices which stacks the columns

from the main diagonal downwards, β0 is 1
2
K(K + 1)-dimensional and the Bj are (1

2
K(K +

1)× 1
2
K(K + 1)) coefficient matrices (j = 1, . . . , q). The pair of hypotheses

H0 : B1 = · · · = Bq = 0 vs. H1 : B1 6= 0 or · · · or Bq 6= 0,

is tested. It is checked by the multivariate LM statistic

V ARCHLM(q) =
1

2
TK(K + 1)R2

m,

where

R2
m = 1− 2

K(K + 1)
tr(Ω̂Ω̂−1

0 ),

Ω̂ is the residual covariance matrix of the 1
2
K(K + 1)-dimensional regression model (5) and

Ω̂0 is the corresponding matrix with q = 0. The statistic is similar to the one described by

Doornik and Hendry (1997, Sec. 10.9.2.4) and is based on a χ2(qK2(K+1)2/4) distribution.

Alternatively, an F version based on V ARCHLM(q)/[qK2(K + 1)2/4] may be used. In

addition, analogous univariate ARCH tests can be applied to the individual residual series.

6.2 Implementation of Diagnostic Tests in JMulTi

The following tests are available:

Portmanteau Test is only available for models without exogenous variables, see Sec. 6.1

Tests for nonnormality multivariate and univariate versions are given, see Sec. 6.1

ARCH-LM multivariate and univariate versions can be selected, see Sec. 6.1

LM tests for autocorr. see Sec. 6.1
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Figure 6: Diagnostic Tests in JMulTi
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7 Correlation Analysis

7.1 Autocorrelation

In JMulTi residual autocorrelations (ACs) ρ̃u,h = γ̃u,h/γ̃u,0 are obtained from

γ̃u,h =
1

T

T∑

t=h+1

(ût − ¯̂u)(ût−h − ¯̂u)

where ¯̂u = T−1
∑T

t=1 ût is the sample mean.

The partial autocorrelation (PAC) between ut and ut−h is the conditional autocorrelation

given ut−1, . . . , ut−h+1. The corresponding sample quantity âh is obtained as the OLS esti-

mator of the coefficient αh in an autoregressive model

ût = ν + α1ût−1 + · · ·+ αhût−h + errort.

In JMulTi , OLS estimates are obtained for each h with sample size T −h. The approximate

95% confidence bounds defined by ±2/
√
T are used. ACs and PACs are computed for the

single residual series.

7.2 Crosscorrelation

To get an overall picture of the correlation structure between the different residual series, a

crosscorrelation plot may be used. In JMulTi we follow the definition of the exact asymptotic

confidence intervals as described in Lütkepohl (1991), Sec. 4.4.2, for stable, unrestricted

VARs and Sec. 5.2.9 for stable VARs with parameter constraints. In case there are exogenous

variables in the model, only the standard ±2/
√
T confidence bounds are available.

7.3 Plotting Autocorrelations and Crosscorrelations in JMulTi

The available residuals are shown in the two lists from which the ones have to be selected

for which autocorrelations or crosscorrelations are desired. The selection is done as usual by

highlighting the residual series.

plotting AC/PAC select the desired series from the left list and press the Autocorrelation

button

plotting crosscorrelations select the desired combination of series in the two lists and

press the Crosscorrelation button

Number of lags the autocorrelation functions are computed up to the specified lag order
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Squared residuals the residuals are squared before the autocorrelations are computed,

exact asymptotic confidence intervals are not available then

Exact CI for crosscorr. in case there are no exogenous variables, the exact asymptotic

95% confidence intervals are estimated, otherwise the standard ±2/
√
T confidence bounds

are used

Figure 7: Correlation Analysis in JMulTi
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8 Stability Analysis

Parameter constancy throughout the sample period is a key assumptions in econometric

models. JMulTi offers several options to check its validity: recursive residuals and parameter

estimates, Chow tests and CUSUM tests.

8.1 Recursive parameter estimates

Recursive parameter estimates are a simple descriptive tool for assessing parameter stability.

They are obtained by simply estimating the model using only data for t = 1, . . . , τ and letting

τ vary from some small value to T , the end of the original sample. Thereby sequences of

coefficient estimates and estimates of the covariance matrix of the asymptotic distributions

are obtained. Here the same estimation method is used which is also used for the full sample

estimation. For example, for a subset VAR model, feasible GLS is used. The series of

estimates together with two-standard error bands are then plotted and can convey useful

information on the relative importance of new observations that are added to the sample.

Implementation in JMulTi

To get to the recursive parameter estimation panel you need to select Model Checking

→Stability Analysis →Recursive Coefficients. The full model as specified in the selection

panel is displayed for the user to choose the coefficients for which the graphs of recursive

estimates are to be produced. Several choices have to be made before displaying the graphs.

Start date marks the beginning of the recursive estimation

Each coeff in separate window displays each coefficient in a separate graph.

Group different lags in separate windows displays graphs with each containing all

the coefficients of a parameter matrix as shown in the selection panel.

8.2 Recursive residuals

The so-called recursive residuals are standardized 1-step forecast errors from a model esti-

mated on the basis of data up to period τ−1. They are computed for the individual equations

of a vector model separately. For a single equation model yt = x′tβ + ut (t = 1, . . . , T ) with

xt (M × 1), they are obtained as follows. Denoting by β̂(τ) the OLS estimator based on the

first τ observations only, that is,

β̂(τ) =

(
τ∑

t=1

xtx
′
t

)−1 τ∑
t=1

xtyt, τ ≥M,
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Figure 8: Recursive parameter estimates.

the recursive residuals are defined as

û(r)
τ =

yτ − x′τ β̂(τ−1)(
1 + x′τ

(∑τ−1
t=1 xtx′t

)−1
xτ

)1/2
, τ = M + 1, . . . , T.

If xt consists of fixed, nonstochastic regressors, the forecast error yτ − x′τ β̂(τ−1) is known to

have mean zero and variance σ2
u

(
1 + x′τ

(∑τ−1
t=1 xtx

′
t

)−1
xτ

)
. Hence, the recursive residuals

have constant variance σ2
u. Therefore, even if some of the regressors are stochastic, the

recursive residuals are often plotted with ”confidence intervals” ±c1−γ/2σ̂u bands, where

c1−γ/2 is the relevant quantile from a normal distribution table and

σ̂2
u = (T −M)−1

T∑
t=1

û2
t

is the usual residual variance estimator based on the full sample. In other words, ût =

yt − x′tβ̂(T ). The recursive residuals exist only if the inverse of
∑τ

t=1 xtx
′
t exists for all

τ = M + 1, . . . , T . Thus they may not be available in the presence of dummy variables.
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Implementation in JMulTi

To get to the recursive residuals panel you need to select Model Checking →Stability Analysis

→Recursive Residuals. Two choices can be made before displaying the graphs.

Standardize residuals are the recursive residuals divided by the estimated standard de-

viation σ̂u based on the original OLS residuals. If checked, JMulTi displays the graphs of the

standardized residuals together with horizontal lines ±1 and ±2 to facilitate the visual in-

spection of the graphs. If this option is not selected, JMulTi displays the graphs of recursive

residuals together with ”confidence intervals”

Coverage probability of CIs allows you to choose the confidence level 90%, 95% or 99%

for the ”confidence intervals” around the recursive residuals

Figure 9: Recursive residuals.

8.3 CUSUM tests

The cumulative sum of recursive residuals up to period τ is

CUSUMτ =
τ∑

t=M+1

û
(r)
t /σ̂u.
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It is plotted for τ = M+1, . . . , T together with the lines ±cγ[
√
T −M+2(τ−M)/

√
T −M ],

where cγ depends on the desired significance level of the resulting test. Brown, Durbin and

Evans (1975) show that if the CUSUMs wander beyond these lines, this is evidence against

structural stability of the underlying model.

Sometimes the CUSUM-of-squares plot based on

CUSUM − SQτ =
τ∑

t=M+1

(û
(r)
t )2

/
T∑

t=M+1

(û
(r)
t )2

results in a more powerful test. If the CUSUM − SQτ cross the lines given by ±c + (τ −
M)/(T − M), structural instability is indicated. The constant c depends on the desired

significance level, the sample size T and the number of regressors in the model. It was also

proposed by Brown et al. (1975).

In JMulTi CUSUM and CUSUM-SQ tests are provided for each equation separately.

Implementation in JMulTi

Handling of dummy variables Modifications are necessary if there are dummy variables

which are constant for the first τ observations. In such a case the formula for the computation

of the recursive residuals does not apply anymore. In this case, following Brown et al. (1975),

the dummy is dropped from the estimation of the recursive residuals for the initial part of the

sample (now starting estimation not from observationM+1 but fromM) and bringing it into

the regression when the parameter associated with the dummy regressor is estimable. Note

that there will be no residual for the period where the dummy is added to the regressors

because there is no meaningful forecast for the related period but the overall number of

residuals will still be the same because there is an additional residual at the beginning.

Significance level of the test allows you to choose the significance level 10%, 5% or 1%

for the CUSUM and CUSUM-of-squares tests

There is also a possibility to choose between the CUSUM and CUSUM-of-squares tests.

8.4 Chow tests

In JMulTi , break-point (BP), sample-split (SS) and Chow forecast (CF) tests are available.

They are applied to the full system rather than the individual equations. The BP Chow

test for checking for a structural break in period TB proceeds as follows. The model un-

der consideration is estimated from the full sample of T observations and from the first T1

and the last T2 observations, where T1 < TB and T2 ≤ T − TB. Denoting the resulting
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Figure 10: CUSUM and CUSUM-of-squares tests.

residuals by ût, û
(1)
t and û

(2)
t , respectively, and using the notation Σ̃u = T−1

∑T
t=1 ûtû

′
t,

Σ̃1,2 = (T1 + T2)
−1(

∑T1

t=1 ûtû
′
t +

∑T
t=T−T2+1 ûtû

′
t), Σ̃(1) = T−1

1

∑T1

t=1 û
(1)
t û

(1)′
t and Σ̃(2) =

T−1
2

∑T
t=T−T2+1 û

(2)
t û

(2)′
t , the BP test statistic is

λBP = (T1 + T2) log det Σ̃1,2 − T1 log det Σ̃(1) − T2 log det Σ̃(2) ≈ χ2(k).

Here k is the difference between the sum of the number of parameters estimated in the first

and last subperiods and the number of parameters in the full sample model. Note that also

the potentially different parameters in the white noise covariance matrix are counted. The

null hypothesis of constant parameters is rejected if λBP is large.

The SS statistic is derived under the assumption that the residual covariance matrix Σu is

constant and checks against the alternative that the VAR coefficients may vary. It has the

form

λSS = (T1 + T2)[log det Σ̃1,2 − log det{(T1 + T2)
−1(T1Σ̃(1) + T2Σ̃(2))}] ≈ χ2(k−).

Here k− is the difference between the sum of the number of coefficients estimated in the first

and last subperiods and the number of coefficients in the full sample model, not counting

the parameters in the white noise covariance matrix.
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The CF statistic is

λCF =
1− (1−R2

r)
1/s

(1−R2
r)

1/s
· Ns− q

Kk∗
≈ F (Kk∗, [Ns− q]),

where

s =

(
K2k∗2 − 4

K2 + k∗2 − 5

)1/2

, q =
Kk∗

2
+ 1, N = T − k1 − k∗ − (K − k∗ + 1)/2.

Here k1 is the number of regressors in each equation of the time invariant model, k∗ the

number of forecast periods considered by the test (k∗ = T − T1), and

R2
r = 1−

(
T1

T

)K

|Σ̃(1)|(|Σ̃u|)−1.

This test is only available for full models and not for subset VARs. For the second degrees

of freedom, Ns− q, of the approximating F distribution, the integer part, [Ns− q], is used

whenever Ns− q is not an integer. The CF test tests against the alternative that all coeffi-

cients including the residual covariance matrix may vary. It also rejects the null hypothesis

of constant parameters for large values of the test statistic.

Because the actual small sample distributions of the test statistics under H0 may be quite

different from the asymptotic χ2- or F -distributions (see Candelon and Lütkepohl (2000)),

JMulTi offers bootstrap p-values. They are computed as follows. From the estimation resid-

uals ût, centered residuals û1 − û, . . . , ûT − û are computed. Bootstrap residuals u∗1, . . . , u
∗
T

are generated by randomly drawing with replacement from the centered residuals. Based

on these quantities, bootstrap time series are calculated recursively starting from given pre-

sample values y−p+1, . . . , y0. Then the model is reestimated with and without allowing for

a break and bootstrap versions of the statistics of interest, say λ∗BP , λ∗SS and λ∗CF are com-

puted. The p-values of the tests are estimated as the proportions of values of the bootstrap

statistics exceeding the corresponding test statistic based on the original sample.

Dealing with dummies In practice, one often has regression models with a constant,

where in addition several of the remaining regressor variables are dummies which might also

be constant either for the first or for the second part of the sample created by splitting

the sample at TB. In order to avoid perfect collinearity between the regressors, JMulTi

deletes dummies automatically from the estimation of either the first or the second part of

the sample where appropriate with corresponding adjustment of the degrees of freedom if

necessary.

Specification in JMulTi

Chow tests can be performed for individual time periods or for a range of time points. In

the latter case the results are given in tables as well as graphs.

22



Input

Break date allows you to specify a break period for which Chow tests are to be performed

Search over datapoints selecting this option allows you to perform Chow tests not only

for a single break date but over a range of the time points as specified in the adjacent menu

entry

Test range allows you to choose the starting and ending dates for the Search over data-

points procedure

Graph of bootstrapped p-values checking this option produces graphs of p-values of

the BP, SS and CF tests calculated for each break date in the specified range

Number of bootstrap replications specifies the number of replications used to construct

the empirical distribution function of the statistics. It has a substantial impact on the

required computation time. For reliable results it may be necessary to select a few thousand

replications although this may result in substantial waiting times

Output

break point Chow test (chow-bp) value of BP test statistic

boot p-val shows the bootstrapped p-value of the corresponding statistic

chiˆ2 p-val shows the p-values of the approximating χ2 distribution corresponding to the

BP statistic

df degrees of freedom of the corresponding χ2 distribution

sample split Chow test (chow-ss) value of SS test statistic

boot p-val shows the bootstrapped p-value of the corresponding statistic

chiˆ2 p-val shows the p-values of the approximating χ2 distribution corresponding to the

SS statistic

df degrees of freedom of the corresponding χ2 distribution

Chow forecast test (chow-fc) values of CF test statistics
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F p-val shows the p-values of the approximating F distribution corresponding to the CF

statistic, only available if a full VAR model has been fitted

df1 numerator degrees of freedom of the corresponding F distribution

df2 denominator degrees of freedom of the corresponding F distribution, integer part of

Ns− q

Figure 11: Chow tests for a single break point.
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Figure 12: Chow tests for a range of possible break points.
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9 Causality Analysis

9.1 Background

Two types of causality tests are implemented in JMulTi , tests for Granger-causality and

tests for instantaneous causality. For both types of tests the vector of endogenous variables

is divided in two subvectors, y1t and y2t, with dimensions K1 and K2, respectively, so that

K = K1 + K2. The subvector y1t is said to be Granger-causal for y2t if it contains useful

information for predicting the latter set of variables. For testing this property, a model of

the form [
y1t

y2t

]
=

p∑
i=1

[
α11,i α12,i

α21,i α22,i

] [
y1,t−i

y2,t−i

]
+ CDt +

[
u1t

u2t

]
,

is considered. In this model setup, y1t is not Granger-causal for y2t if and only if

α21,i = 0, i = 1, 2, . . . , p.

Therefore this null hypothesis is tested against the alternative that at least one of the α21,i

is nonzero. A Wald test statistic, divided by the number of restrictions pK1K2, is used

in conjunction with an F (pK1K2, KT − n∗) distribution for testing the restrictions. Here

n∗ is the total number of parameters in the system (see Lütkepohl (1991)), including the

parameters of the deterministic term. Of course, the role of y1t and y2t can be reversed to

test Granger-causality from y2t to y1t.

The test is problematic if some of the variables are nonstationary (integrated). In that

case the usual asymptotic distribution of the test statistic may not be valid under the null

hypothesis. Therefore, the test should be performed in the VEC framework if there are

integrated variables in the system of interest.

Instantaneous causality is characterized by nonzero correlation of u1t and u2t. Thus the null

hypothesis

H0 : E(u1tu
′
2t) = 0

is tested against the alternative of nonzero covariance between the two error vectors in

testing for instantaneous causality. The Wald test described in Lütkepohl (1991, Sec. 3.6.3)

is reported in JMulTi .

If there are exogenous variables in the model, the analysis is carried out conditionally on

these variables. In other words, a model

[
y1t

y2t

]
=

p∑
i=1

[
α11,i α12,i

α21,i α22,i

] [
y1,t−i

y2,t−i

]
+B0xt + · · ·+Bqxt−q + CDt +

[
u1t

u2t

]

is considered and the tests are carried out on the α coefficients and the covariance of u1t and

u2t in this model.
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9.2 Causality Analysis in JMulTi

After the model is specified with a VAR order of at least one, see Sec. 3, the causality analysis

can be accessed by clicking on the menu Structural Analysis→Causality Tests. The endoge-

nous variables are shown in the list. There you can select from 1 up to K− 1 variables. The

respective H0 hypothesis then appears on the panel. The tests are always performed on the

unrestricted VAR part of the model even if a subset model is currently under consideration.

Restrictions for exogenous variables and deterministic terms are maintained, however. In

other words, if zero restrictions have been placed on the coefficient matrices of the exogenous

variables and/or the deterministic terms, these restrictions will be imposed in the causality

tests.

Figure 13: Causality Analysis in JMulTi
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10 Impulse Response Analysis

10.1 Background

Impulse response analysis can be used to analyze the dynamic interactions between the

endogenous variables of a VAR(p) process. In this analysis the exogenous and deterministic

variables are treated as fixed and may therefore be dropped from the system. In other words,

the part of the conditional mean of the endogenous variables attributable to these variables

is eliminated. The adjusted endogenous variables are now denoted by yt. If the process yt is

stationary (I(0)), it has a Wold moving average (MA) representation

yt = Φ0ut + Φ1ut−1 + Φ2ut−2 + · · · , (6)

where Φ0 = IK and the Φs can be computed recursively as

Φs =
s∑

j=1

Φs−jAj, s = 1, 2, . . . ,

with Φ0 = IK and Aj = 0 for j > p. The coefficients of this representation may be

interpreted as reflecting the responses to impulses hitting the system. The (i, j)th elements

of the matrices Φs, regarded as a function of s, trace out the expected response of yi,t+s to

a unit change in yjt holding constant all past values of yt. The elements of Φs represent the

impulse responses of the components of yt with respect to the ut innovations. These impulse

responses are sometimes called forecast error impulse responses because the ut are the 1-step

ahead forecast errors (see Lütkepohl (1991) for further discussion).

Although the Wold representation does not exist for nonstationary cointegrated processes,

the Φs impulse response matrices can be computed in the same way for nonstationary pro-

cesses. Thus the forecast error impulse responses are available even if some variables are not

I(0). In contrast to the stationary case, impulses hitting a nonstationary system may have

permanent effects, however.

Because the underlying shocks are not likely to occur in isolation if the components of ut

are not instantaneously uncorrelated, that is, if Σu is not diagonal, in many applications the

innovations of the VAR are orthogonalized using a Cholesky decomposition of the covariance

matrix Σu. Denoting by P a lower triangular matrix such that Σu = PP ′, the orthogonalized

shocks are given by εt = P−1ut. Hence, in the stationary case we get,

yt = Ψ0εt + Ψ1εt−1 + · · · , (7)

where Ψi = ΦiP (i = 0, 1, 2, . . .). Here Ψ0 = P is lower triangular so that an ε shock in the

first variable may have an instantaneous effect on all the variables, whereas a shock in the

second variable cannot have an instantaneous impact on y1t but only on the other variables

and so on.
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Notice that if a different ordering of the variables in the vector yt is chosen this may produce

different impulse responses. Hence, the effects of a shock may depend on the way the

variables are arranged in the vector yt. In view of this nonuniqueness of the impulse responses

structural VAR analysis has been developed (see Sec. 13).

10.2 Impulse Response Analysis in JMulTi

To access the Impulse Response Panel, select Structural Analysis→Impulse Response Anal-

ysis from the menu. It is possible to create orthogonalized impulse responses based on an

innovation of size one standard deviation in the transformed model as well as forecast error

variance impulse responses based on a unit innovation in the original model.

First you have to select the impulse and response variables as well as the desired confidence

interval from the tables. Then you can generate text or graphical output. The confidence

intervals are only available if they have been generated before, see Sec. 11.

Figure 14: Impulse Response Analysis in JMulTi
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11 Bootstrapping Impulse Responses

11.1 Background

In practice, the impulse responses are computed from the estimated VAR coefficients and

bootstrap methods are available in JMulTi to construct confidence intervals (CIs) which

reflect the estimation uncertainty. Alternative bootstrap approaches are implemented. They

proceed as follows:

First the model of interest is estimated. Denoting the estimation residuals by ût the centered

residuals û1−û, . . . , ûT−û are obtained. Then bootstrap residuals u∗1, . . . , u
∗
T are generated by

randomly drawing with replacement from the centered residuals. These quantities are used to

compute bootstrap time series recursively starting from given presample values y−p+1, . . . , y0

and fixing the exogenous and deterministic terms. The model of interest is then reestimated

and bootstrap versions of the quantities of interest are computed. Repeating these steps a

large number of times, bootstrap distributions of the quantities of interest are obtained.

In the following the symbols φ, φ̂ and φ̂∗ denote some general impulse response coefficient, its

estimator implied by the estimators of the model coefficients and the corresponding bootstrap

estimator, respectively. The following bootstrap CIs are implemented in JMulTi :

• Standard percentile interval

It is determined as

CIS =
[
s∗γ/2, s

∗
(1−γ/2)

]
,

where s∗γ/2 and s∗(1−γ/2) are the γ/2- and (1− γ/2)-quantiles, respectively, of the boot-

strap distribution of φ̂∗. The interval CIS is the percentile confidence interval described,

e.g., by Efron and Tibshirani (1993).

• Hall’s percentile interval

It is determined as

CIH =
[
φ̂− t∗(1−γ/2), φ̂− t∗γ/2

]
,

where t∗γ/2 and t∗(1−γ/2) are the γ/2- and (1− γ/2)-quantiles, respectively, of the distri-

bution of φ̂∗ − φ̂ (see Hall (1992)).

• Hall’s studentized interval

It is determined by using bootstrap quantiles t∗∗γ/2 and t∗∗1−γ/2 from the distribution of

(φ̂∗ − φ̂)/(v̂ar(φ̂∗))1/2,

CISH =
[
φ̂− t∗∗(1−γ/2)(v̂ar(φ̂))1/2, φ̂− t∗∗γ/2(v̂ar(φ̂))1/2

]
.

In this approach the variances are estimated by a bootstrap within each bootstrap

replication. Therefore it is rather demanding in terms of computing time.

Unfortunately, the bootstrap does not always result in CIs with the desired coverage even

asymptotically. For a critical discussion see Benkwitz, Lütkepohl and Neumann (2000).
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11.2 Bootstrapping Confidence Intervals in JMulTi

Because bootstrapping confidence intervals for impulse responses may be time consuming,

it is in a separate panel, where the relevant parameters can be adjusted. The generated CIs

are saved until you either specify a different model or you increase the number of lags for

the impulse response analysis.

Use this seed you may use a distinct seed value to initialize the random number generator

with a certain value, if disabled, the random number generator is initialized each time it is

invoked with a different value dependent on the system time

Number of bootstrap replications this value affects computing time, for reliable CIs

the number still has to be large, say a few thousand

Number of periods the number of periods for which the CIs as well as the impulse re-

sponses are computed, increasing this value deletes already computed CIs

Select the type of CI you want to generate from the available combo box. There are two pan-

els available. For Efron & Hall Bootstrap Percentile CI, the Standard percentile interval, see

Sec. 11.1, as well as Hall’s percentile interval, see Sec. 11.1, are generated. The other option

is to generate Studentized Hall Bootstrap CI, see Sec. 11.1, with the additional computation

of the variance in each step.

Figure 15: Bootstrapping Efron & Hall Confidence Intervals in JMulTi
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Figure 16: Bootstrapping Hall’s Studentized Confidence Intervals in JMulTi
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12 Forecast Error Variance Decomposition

12.1 Background

Forecast error variance decompositions (FEVDs) are popular tools for interpreting VAR

models. Denoting the ijth element of the orthogonalized impulse response coefficient matrix

Ψn by ψij,n, the variance of the forecast error

yk,T+h − yk,T+h|T

is

σ2
k(h) =

h−1∑
n=0

(ψ2
k1,n + · · ·+ ψ2

kK,n) =
K∑

j=1

(ψ2
kj,0 + · · ·+ ψ2

kj,h−1).

The term (ψ2
kj,0 + · · ·+ ψ2

kj,h−1) is interpreted as the contribution of variable j to the h-step

forecast error variance of variable k. Dividing the above terms by σ2
k(h) gives the percentage

contribution of variable j to the h-step forecast error variance of variable k,

ωkj(h) = (ψ2
kj,0 + · · ·+ ψ2

kj,h−1)/σ
2
k(h)

(see Lütkepohl (1991)). In JMulTi these quantities, computed from estimated parameters,

are reported for various forecast horizons.

12.2 Implementation in JMulTi

To access the FEVD panel after a model was estimated, select Structural Analysis→FEV

Decomposition from the menu. You may then select the variables which should be decom-

posed from the table. A plot is created, which presents the contributions of each variable to

the FEV of the selected variable in a bar diagram. Text output is also provided. It can be

saved by RIGHT clicking over the text area.
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Figure 17: FEVD in JMulTi
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13 SVAR Analysis

The SVAR (structural vector autoregressive) model can be used to identify the shocks to be

traced in an impulse response analysis by imposing restrictions on the matrices A and B in

the model form

Ayt = A∗1yt−1 + · · ·+ A∗pyt−p +B∗
0xt + · · ·+B∗

qxt−q + C∗Dt + Bεt (8)

Here the structural errors εt are assumed to be white noise with (0, IK). The coefficient

matrices are structural coefficients which may be different from the reduced form coefficients

in (1). The point of departure for a structural analysis is a reduced form model, however.

Therefore a reduced form model has to be specified before the SVAR analysis can be entered.

In the SVAR analysis only restrictions for A and B can be added. The reduced form residual

ut is recovered from the structural model as ut = A−1Bεt so that Σu = A−1BB′A−1′.

JMulTi offers three versions of the AB model, an A model where B = IK , a B model where

A = IK , and a general AB model where restrictions can be placed on both matrices. In

addition a Blanchard-Quah model with restrictions placed on the long-run effects of shocks

is available (see below).

For the A model and for the B model at least K(K − 1)/2 restrictions have to be imposed

for identification of a system with K endogenous variables. For the AB model, at least

K2 +K(K − 1)/2 restrictions are needed (see Breitung, Brüggemann and Lütkepohl (2004)

for examples).

Estimation is done by maximum likelihood using a scoring algorithm (see Amisano and

Giannini (1997) or Breitung et al. (2004)). If the algorithm does not converge, some manual

fine tuning may be necessary. If an overidentified model is estimated, the value of a likelihood

ratio statistic

LR = T
(
log det(Σ̃r

u)− log det(Σ̃u)
)

is also reported. Here Σ̃u is the ML estimator of the reduced form model and Σ̃r
u is the

corresponding estimator obtained from the restricted structural form estimation.

In the Blanchard-Quah model A = IK and the matrix of long-run effects

(IK − A1 − · · · − Ap)
−1B

is assumed to be lower-triangular. In other words, the second residual cannot have a long-run

impact (has a zero long-run impact) on the first variable, the third residual cannot have a

long-run impact on the first and second variable, etc.. To ensure that plausible restrictions

are obtained it may be necessary to adjust the order of the variables. This has to be done

in the Specification panel. Estimation of the Blanchard-Quah model is done by a Choleski

decomposition of the matrix

(IK − Â1 − · · · − Âp)
−1Σ̂u(IK − Â′1 − · · · − Â′p)

−1,
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where a hat indicates a reduced form estimate.

Once an SVAR model has been estimated, SVAR IRA (impulse response analysis) and SVAR

FEVD (forecast error variance decomposition) are activated and can be used as described

in Sec. 10, 11 and 12.

13.1 Implementation in JMulTi

To access the SVAR analysis, estimate a reduced form VAR model first and then go to

SVAR→SVAR Estimation. Then choose between the Blanchard-Quah and AB models. If

the Blanchard-Quah model is chosen, restrictions are imposed automatically and the model

can be estimated directly. If standard errors for the estimated long-run coefficients are

desired, they can be computed by a bootstrap. Choose the number of bootstrap replications

and select the appropriate button to display the estimates.

If an AB model is chosen, specify the kind of model you wish to work with (A, B or AB) and

impose the restrictions by clicking on the relevant elements of the matrices activated in the

panel. You can also edit coefficients manually after checking the appropriate box. The model

will be estimated upon pressing the Execute button. If there are convergence problems, press

the Optimization Settings button and adjust the settings in the panel. Remember, however,

that convergence problems can also be due to inappropriate restrictions.

As mentioned earlier, once the SVAR model has been estimated successfully, SVAR IRA

and SVAR FEVD are activated. They can be accessed by going to SVAR→SVAR IRA or

SVAR→SVAR FEVD.
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14 Forecasting with VAR Processes

14.1 Background

Forecasts are based on conditional expectations assuming independent white noise ut. In

other words, an h-step forecast at time T is

yT+h|T = A1yT+h−1|T + · · ·+ ApyT+h−p|T +B0xT+h + · · ·+BqxT+h−q + CDT+h. (9)

The forecasts are computed recursively for h = 1, 2, . . . , starting with

yT+1|T = A1yT + · · ·+ ApyT+1−p +B0xT+1 + · · ·+BqxT+1−q + CDT+1

for h = 1. Notice that values for the exogenous variables have to be supplied for the forecast

period.

The corresponding forecast errors are

yT+h − yT+h|T = uT+h + Φ1uT+h−1 + · · ·+ Φh−1uT+1,

where

Φs =
s∑

j=1

Φs−jAj, s = 1, 2, . . . ,

with Φ0 = IK and Aj = 0 for j > p (see Lütkepohl (1991)). Thus, the forecast errors

have zero mean and, hence, the forecasts are unbiased. Moreover the joint forecast error

covariance matrix for all forecasts up to horizon h is

Cov






yT+1 − yT+1|T

...

yT+h − yT+h|T





 =




I 0 . . . 0

Φ1 I 0
...

. . .
...

Φh−1 Φh−2 . . . I




(Σu ⊗ Ih)




I 0 . . . 0

Φ1 I 0
...

. . .
...

Φh−1 Φh−2 . . . I




′

.

(10)

Assuming normally distributed disturbances, these results can be used for setting up fore-

cast intervals for any linear combination of these forecasts. In particular, if any of the

variables is in first differenced form, a forecast of the undifferenced variable can be obtained

by integration. E.g., if yt = ∆zt = zt − zt−1, zT+h|T = yT+h|T + · · ·+ yT+1|T + zT .

For the yt, forecast intervals may be setup as

[yk,T+h|T − c1−γ/2σk(h), yk,T+h|T + c1−γ/2σk(h)],

where c1−γ/2 is the (1− γ
2
)100 percentage point of the standard normal distribution, yk,T+h|T

denotes the kth component of yT+h|T and σk(h) is the standard deviation of the h-step

forecast error for the kth component of yt. Forecast intervals of linear combinations of

yT+1, . . . , yT+h may be set up analogously, using (10) for determining the relevant standard

deviation.

37



In practice, the forecasts are based on estimated parameters. This feature may be taken into

account by correcting the forecast error variances accordingly, as in Lütkepohl (1991), Sec.

3.5. Notice, however, that the underlying asymptotic theory assumes a stable, stationary

process.

14.2 Forecasting in JMulTi

After a model was estimated, the forecast panel is accessible by selecting Forecasting→Forecast

Variables from the menu. It is possible to generate level forecasts as well as level forecasts

given that the underlying series is in first differences.

Horizon determines for how many periods forecasts should be computed

CI coverage (%) allows you to choose the coverage level of the forecast intervals

Variables to forecast select the variables that are to be forecasted from the list

Deterministics Because deterministic variables need to be available for each period T +

1, ..., T + h, this table presents the available values that are extrapolated from the actual

deterministic series. Extrapolation works well for trend, intercept and seasonal dummies.

Other deterministic variables are set to 0, shift dummies are recognized and set to the value

they had in T . It is possible to edit the values used for the forecast. If the values of the

deterministic series are available for some or all of the h forecast periods, these values are

automatically used.

Exogenous Because exogenous variables need to be available for each forecast period

T + 1, ..., T + h, this table presents the values used. If values of the exogenous series are

available for some or all of the h forecast periods, these values are automatically used. If

there are no values available they are automatically set to 0 and have to be edited manually

by the user.

Asymptotic CI If selected, the exact asymptotic forecast confidence intervals are esti-

mated, see Lütkepohl (1991), Sec. 5.2.6. and Sec. 10.5

Start date of plot (level) adjusts the date from which the original series should be

graphed including the computed forecast. This date does not affect undifferenced forecasts

which are only graphed from time T

Forecast generates a forecast resulting in a graph as well as text output on the Text tab
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Undifferenced Forecast generates a level forecast assuming that the underlying series

are in first differences. Exact asymptotic CIs are not available if this option is chosen

Configure Undifferenced Forecast to generate an undifferenced forecast, the values of

the endogenous variables in levels for time t have to be given. This panel presents a selection

mechanism that allows either to specify the original level series or to manually edit the values

needed

Figure 18: Forecasting in JMulTi
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