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Vector error correction models (VECMs) with a prespecified number of cointegrating rela-

tions, a finite number of lagged differences, deterministic terms and exogenous variables can

be specified, estimated and used for forecasting, causality and impulse response analysis in

JMulTi . The relevant features are described in the following. For further information and

references see Chapter 3 of Lütkepohl and Krätzig (2004).
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1 The Model

The general setup of a VECM allowed for in JMulTi is of the form

Γ0∆yt = α[β′ : η′]

[
yt−1

Dco
t−1

]
+Γ1∆yt−1 + · · ·+Γp∆yt−p +B0xt + · · ·+Bqxt−q +CDt +ut, (1)

where yt = (y1t, . . . , yKt)
′ is a vector of K observable endogenous variables, xt = (x1t, . . . , xMt)

′

is a vector of M observable exogenous or unmodelled variables, Dco
t contains all determinis-

tic terms included in the cointegration relations and Dt contains all remaining deterministic

variables. Deterministic variables may be constants, linear trends, seasonal dummy variables

as well as user specified other dummy variables. Notice that a single deterministic term can-

not appear in both Dt and Dco
t so that the two vectors have to contain mutually exclusive

terms. The residual vector ut is assumed to be a K-dimensional unobservable zero mean

white noise process with positive definite covariance matrix E(utu
′
t) = Σu.

The parameter matrices α and β have dimensions (K × r) and they have to have rank r.

They specify the long-run part of the model with β containing the cointegrating relations

and α representing the loading coefficients. The column dimension of η is also r and its row

dimension corresponds to the dimension of Dco
t . The notation

β∗ =

[
β

η

]

will be used in the following and the row dimension of β∗ will be denoted by K∗. Hence, β∗

is a (K∗ × r) matrix.

The cointegrating rank r has to be specified by the user. It has to be in the range 1 ≤
r ≤ K − 1. Cointegration tests for determining the cointegrating rank are available in the

Initial Analysis part of JMulTi . The Γi, Bj and C are also parameter matrices with suitable

dimensions.

Various restrictions can be imposed on the parameter matrices. In particular, it is necessary

to impose restrictions to ensure an identified model form which can be estimated. Generally,

(1) is a structural form which can only be estimated if identifying restrictions are imposed.

If Γ0 is specified to be an identity matrix, the model becomes a reduced form.

By imposing zero restrictions, the right-hand side variables may not be the same in all equa-

tions. For example, some equations may contain specific dummy or exogenous variables

which do not appear in other equations. Notice also that B0 = 0 may be specified if the

exogenous variables are to appear in lagged form only. It is also possible to specify a model
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without any exogenous variables.

The number of lagged differences of the endogenous variables, p, may be chosen with the

help of model selection criteria (see Sec. 3.1).

It may also be worth noting that the model (1) can be rearranged such that all endogenous

variables appear in levels only and the deterministic terms are all collected in the vector D∗
t :

A0yt = A1yt−1 + · · ·+ Ap+1yt−p−1 + B0xt + · · ·+ Bqxt−q + C∗D∗
t + ut. (2)

This model is similar but not identical to the most general VAR model available in JMulTi .

In the VAR part, A0 is restricted to be an identity matrix, so that the VARs are in reduced

from. Notice, that p + 1 lags of yt appear on the right-hand side of (2) while there are only

p lags of ∆yt in (1).

1.1 General Remark about the Implementation of VECMs in JMulTi

VEC modelling in JMulTi is a step by step procedure, where each task is related to a special

panel. Once a model has been estimated, the diagnostic tests as well as the stability anal-

ysis, structural analysis and forecasting use the results from the estimation. If changes in

the model specification are made by the user, these results are deleted and the model has to

be reestimated. In other words, only results related to one model at a time are kept in the

system. Hence, there should be no confusion regarding the model setup while going through

the analysis.

Sometimes certain menus or options are not available. This always has a specific reason

which is described in the respective help topic.
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2 Estimation

2.1 Background

There are different estimation procedures available for estimating a model of the type (1),

depending on the precise model specification. If Γ0 = I, there are no zero restrictions on the

Γj matrices (j = 1, . . . , p) and there are no exogenous variables, that is, a reduced form model

is specified without exogenous variables and where each equation has the same right-hand

side variables, then the Johansen reduced rank (RR) estimation procedure (see Johansen

(1995)) and a simple two step (S2S) method (see Ahn and Reinsel (1990) or Lütkepohl and

Krätzig (2004, Chapter 3)) can be applied. If a structural form with Γ0 6= I is specified or

there are restrictions on the Γj (j = 1, . . . , p) or there are exogenous variables, then a two

stage estimation procedure can be used in JMulTi . There are different options for the first

and second step of the two stage procedure. The different estimation methods are briefly

described in the following.

2.1.1 Johansen Procedure

The Johansen RR procedure can be used to estimate models of the form

∆yt = αβ∗′
[

yt−1

Dco
t−1

]
+ Γ1∆yt−1 + · · ·+ Γp∆yt−p + CDt + ut

without parameter restrictions (see Johansen (1995) for details). The cointegration matrix

β∗ is automatically normalized as follows:

β∗ =

[
Ir

β∗(K∗−r)

]
,

where β∗(K∗−r) is a ((K∗ − r)× r) matrix. This normalization requires that the order of the

variables is specified such that the first r variables are actually involved in the cointegration

relations. In other words, meaningful cointegration relations must result with the normal-

ization.

If the Johansen procedure is used for estimation, there is also a possibility to test restrictions

of the form

H0 : Rvec(β∗(K∗−r)) = r versus H1 : Rvec(β∗(K∗−r)) 6= r.

If there are J linearly independent restrictions for the coefficients of β∗(K∗−r), then R is a

(J × (K∗ − r)r) matrix and r is a J-dimensional vector. A Wald test is used with a χ2(J)

distribution.
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Although restrictions on the cointegration relations can be tested on the basis of the Jo-

hansen estimators, JMulTi does not offer the possibility to impose the restrictions in the RR

estimation procedure.

2.1.2 S2S Estimation

The simple two step (S2S) estimator is also only applicable for reduced form models (Γ0 = 0)

without exogenous variables and without restrictions on the short-term dynamics. If the

latter condition holds, we can concentrate out the short-term dynamics and deterministic

terms outside the cointegration relations (CDt) by replacing the parameters by their LS

estimators conditional on the parameters in the error correction term. This can be done by

regressing ∆yt and [
yt−1

Dco
t−1

]

on the short-term dynamics and CDt. Denoting the residuals by ∆ỹt and ỹ∗t−1 and using the

normalization

β∗ =

[
Ir

β∗(K∗−r)

]
,

we can write

∆ỹt − αỹ
(1)
t−1 = αβ∗

′
(K∗−r)ỹ

(2)
t−1 + ũt,

where ỹ
(1)
t−1 consists of the first r components of ỹ∗t−1 and y

(2)
t−1 contains the last K∗ − r

components of ỹ∗t−1. Premultiplying by (α′Σ−1
u α)−1α′Σ−1

u and defining

wt = (α′Σ−1
u α)−1α′Σ−1

u (∆ỹt − αỹ
(1)
t−1),

gives

wt = β∗
′

(K∗−r)ỹ
(2)
t−1 + vt, (3)

where vt = (α′Σ−1
u α)−1α′Σ−1

u ũt.

If α and Σu were given, β∗
′

(K∗−r) could be estimated by LS from this model. Because the

former parameters are unknown in practice, the following 2-step procedure may be used. In

the first step Π = [α : αβ∗
′

(K∗−r)] is estimated by LS from the concentrated model

∆ỹt = Πỹ∗t−1 + ũt.

The first r columns of the estimated Π are used as an estimator of α and the residual

covariance estimator is used for Σu. These quantities are substituted in the definition of wt

and β∗
′

(K∗−r) is estimated by LS from the resulting multivariate model corresponding to (3).

Denoting the estimator by β̃∗
′

(K∗−r) and defining

β̃∗ =

[
Ir

β̃∗(K∗−r)

]
,
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the remaining parameters are estimated by LS from the model

∆yt = αβ̃∗
′
[

yt−1

Dco
t−1

]
+ Γ1∆yt−1 + · · ·+ Γp∆yt−p + CDt + ût.

Linear restrictions on the cointegration matrix of the form

vec(β∗
′

(K∗−r)) = Hη + h

can be accommodated in the S2S estimation (see Lütkepohl and Krätzig (2004, Chapter

3)). Here H is a fixed matrix, h a fixed vector and η a vector of free parameters. These

restrictions may be formulated alternatively as

Rvec(β∗
′

(K∗−r)) = r,

where R is a (J × (K∗ − r)r) matrix and r is a J-dimensional vector, as before.

2.1.3 Two Stage Estimation

In the two stage procedure restrictions can also be imposed on the loading coefficients, the

short-term dynamics and the deterministic terms. Moreover, there may be exogenous vari-

ables and structural restrictions. In other words the general from (1) can be estimated with

the two stage procedure.

In the first stage the cointegration matrix β∗ has to be estimated or specified. If the user

knows the cointegration relations, they may be specified directly. If there is just one coin-

tegrating relation it may be estimated from a single equation of the VECM. The user may

specify the equation to be used. The equation is then estimated by OLS and the cointegra-

tion relation is extracted by normalizing the coefficient of the first variable to 1 (see, e.g.,

Lütkepohl (1991, Chapter 11)). Alternatively, the cointegration matrix may be estimated by

Johansen’s RR procedure or by the S2S method. Note, however, that in JMulTi all exogenous

variables have to be eliminated from the model for performing this step. Also the model

must be set up in reduced form and subset restrictions cannot be imposed in the latter two

methods. The cointegration matrix obtained from the RR regression will automatically be

normalized such the the first part is an identity matrix. Thereby an identified form of the

estimated β∗ matrix is available for both the RR and the S2S method which can be used in

the second stage of the estimation procedure.

In the second stage, structural and subset restrictions as well as exogenous variables can be

accounted for. The term β̂∗
′
y∗t−1 is treated as an additional set of variables. The user may

specify the estimation strategy to be used in the second stage. If he/she wants JMulTi to

make a choice, the Automatic option can be selected. In that case, OLS for each individual
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equation will be used if the set of regressors is the same in each of the equations. Feasible

systems GLS will be used if the model is in reduced form and contains subset restrictions. In

this procedure, the individual equations of the system are first estimated by OLS. The resid-

uals are used to estimate the white noise covariance matrix Σu as Σ̂u = T−1
∑T

t=1 ûtû
′
t and

this estimator is then used in the next step to compute the GLS estimator. If the VECM is

in structural form with Γ0 6= I, a 3SLS (three stage least squares) procedure is used. JMulTi

does a check of the identification of the model. No estimation can be performed if JMulTi

is not sure about the identification, based on an order criterion. In all of these procedures,

the cointegration relations estimated or specified in the first stage are included as additional

regressor variables. The user also has the option of selecting OLS, GLS or 3SLS rather than

leaving the choice to JMulTi . This makes sense, for example, if an OLS rather than GLS pro-

cedure is desired for a reduced form with zero restrictions on some of the coefficient matrices.

2.2 Estimation Options in JMulTi

On the right-hand side of the specification panel for VECMs the variables must be selected

and the sample period has to be specified. Then the number of lagged differences of the

endogenous variables, the number of lags of the exogenous variables - if applicable -, the

cointegration rank and the deterministic terms to be included can be specified in the upper

left hand part of the panel. See Sec. 3.2 for details.

The estimation method has to be specified in the lower left-hand part of the specification

panel. To impose restrictions on the cointegration relations, choose Specification → Specify

and Test Restrictions on Beta. A menu appears which allows you to specify the restrictions.

They will only be taken into account if the S2S estimation procedure is selected in the VECM

specification menu. If restrictions are specified, the Delete Restrictions button can be used to

deactivate them. If the Two stage procedure is selected, a structural form may be specified

by checking the corresponding box and pressing the Structural Form button. Then a menu

appears which allows to specify elements in the Γ0 matrix which are not restricted to be zero.

Note that the diagonal elements of the matrix have to be ones. Moreover, there must be

enough zeros to ensure identification. Also, in the Two stage procedure the first and second

stages have to be specified as described in Sec. 2.1.3.

2.3 Estimation Results in JMulTi

After the model and the estimation procedure are specified properly, see Sec. 3, it can be

estimated by selecting the menu Estimation→Estimate Model. Output is generated in matrix
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Figure 1: Specification of Estimation Strategy for VECM

and text form.

Figure 2: Estimation Results in Matrix (VEC) Form

The Matrix(VEC) panel displays the estimated parameters of the VEC form of the model,

starting with the endogenous, then exogenous and finally the parameter matrices associated

with deterministic terms. This arrangement reflects the mathematical notation to make

clear, what type of model was actually estimated. By RIGHT clicking on the coefficients

tables one can increase or decrease the precision of the numbers. By clicking on the respective

buttons it is possible to display either the estimated coefficients, the standard deviations or

the t-values.

There is also an option to display the corresponding levels form (2) of the model. In this

from only the estimated coefficients and no standard errors or t-ratios are provided.

The text panel displays the same information as the two matrix panels but in a form that

can be saved as a text file by RIGHT clicking over the text area. In addition to that, it gives
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Figure 3: Estimation Results in Matrix (VAR) Form

the modulus of the eigenvalues of the reverse characteristic polynomial, which is defined as:

det(IK − A1z − · · · − Apz
p), see Lütkepohl (1991), Ch. 2.

The Stats panel shows the sample range, the Gaussian log likelihood value corresponding to

the estimates, the residual covariance matrix and its determinant as well as the corresponding

correlation matrix.
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Figure 4: Estimation Results in Text Form

Figure 5: Some Statistics Related to Estimation Results
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3 Model Specification

Specifying a model of the form (1) in JMulTi involves the specification of the cointegrating

rank as well as a maximum lag order for the endogenous and exogenous variables. Moreover,

zero restrictions may be placed on the parameter matrices. The cointegrating rank can be

specified with the help of the cointegration tests available in the Initial Analysis part. In the

VECM part model selection criteria are available to aid in the choice of the number p of

lagged differences of the endogenous variables. Moreover different procedures for imposing

zero restrictions on the parameter matrices are offered (see Sec. 4).

3.1 Model Selection Criteria

The information criteria are computed for reduced form VECMs

∆yt = Πyt−1 + Γ1∆yt−1 + · · ·+ Γn∆yt−n + B0xt + · · ·+ Bqxt−q + C∗D∗
t + ut,

where yt is K-dimensional. Note that here the matrix Π replaces the term αβ′ in the model

(1). Its rank is left unrestricted so that the estimated matrix will have rank K. The lag

order q of the exogenous variables xt and the deterministic term D∗
t have to be prespecified

by the analyst. For a range of lag orders n the model is estimated by OLS (applied to

each equation separately). The optimal lag order is chosen by minimizing one of the usual

information criteria:

AIC(n) = log det(Σ̃u(n)) +
2

T
nK2,

HQ(n) = log det(Σ̃u(n)) +
2 log log T

T
nK2,

SC(n) = log det(Σ̃u(n)) +
log T

T
nK2

and

FPE(n) =

(
T + n∗

T − n∗

)K

det(Σ̃u(n)),

where Σ̃u(n) is estimated by T−1
∑T

t=1 ûtû
′
t, ût being the estimation residual vectors. The

quantity n∗ is the total number of parameters in each equation of the model when n is the

lag order of the endogenous variables, also counting the levels variables, the deterministic

terms and exogenous variables. The sample length is the same for all different lag lengths

and is determined by the maximum lag order. In other words, the number of values set aside

as presample values is determined by the maximum lag order considered for the endogenous

and exogenous variables. The lag length which minimizes the respective information crite-

rion is presented in the output of JMulTi . See also the Model Selection part for VAR models.

The model selection criteria can be accessed via Specification → Specify VEC Model →
Compute Infocriteria. Then a menu appears where the maximum lag length can be specified.

The optimal lag order is computed upon pressing the button Compute Infocriteria.
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3.2 Selection of Variables, Lags and Cointegrating Rank in JMulTi

To get to the specification panel you need to select Specification→Specify VEC Model. For

building a model of the form (1) in JMulTi you have to choose the variables you want to

include in your model first. By RIGHT clicking on the selected variables you may define

exogenous or deterministic variables. The selected user defined variables are shown in their

correct order in the available text fields.

You may also adjust the sample by editing the date text fields in the selection panel. To

include intercept, trend or seasonal dummies, you should use the available checkboxes. But

it is possible to add further deterministic variables defined by the user.

For selecting the lags for the differenced endogenous variables it may be helpful to use

the information criteria. To do that, a model with the selected variables is estimated. The

exogenous lags are taken as given. A search is performed over the lags of the endogenous

variables up to the maximum order.

The cointegrating rank r must be specified in the range 1, . . . , K − 1.

Figure 6: Specification of Variables, Sample Period, Lags and Cointegrating Rank

3.3 Specification of Deterministic Terms

If deterministic terms are to be included in the cointegration relations, this may be accom-

plished in the Specify VEC Model menu by checking the relevant terms in the Add Dets to EC

Term panel. For a particular model setup, only the terms offered in the panel are possible

choices.
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3.4 Specification of Structural Form Parameters

VECMs can be specified in structural form with instantaneous relations between the endoge-

nous variables via proper specification of Γ0 in (1). If this matrix is not specified, JMulTi

will automatically choose an identity matrix and set up the model in reduced form. Other

Γ0 matrices can be specified by checking Estimate structural form in the Specify VEC Model

panel. This is only possible if the two stage estimation procedure was selected previously.

In that case a menu opens up which allows to specify off-diagonal elements to be estimated

unrestrictedly. JMulTi will check identification problems by checking the order condition for

identification and informing the user if the condition is not satisfied.
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4 Subset Model Selection in VECMs

4.1 Background

Zero restrictions may be imposed on the parameters of a model based on the t-ratios, for

example. Alternatively, restrictions for individual parameters or groups of parameters may

be based on model selection criteria. JMulTi offers suitable model selection procedures based

on single equation methods as well as algorithms which consider the full system at once in

the elimination procedure.

To describe the single equation methods consider the equation

yt = θ1x1t + · · ·+ θNxNt + ut, t = 1, . . . , T. (4)

For simplicity, all right-hand side variables are denoted by xkt including estimated cointegra-

tion relations which are added as additional variables, exogenous and deterministic variables

as well as lagged endogenous variables. The optimal set of regressors is then selected by

minimizing a variable selection criterion of the general form

CR(i1, . . . , in) = log(SSE(i1, . . . , in)/T ) + cT n/T, (5)

where SSE(i1, . . . , in) is the sum of squared errors obtained by including xi1t, . . . , xint in

the regression model (4) and cT is a quantity which determines the specific criterion. More

precisely,

cT =





2 for AIC,

2 log log T for HQ,

log T for SC.

The following Sequential Elimination of Regressors (SER) strategy is available in

JMulTi : Sequentially delete those regressors which lead to the largest reduction of the given

criterion until no further reduction is possible (see, e.g., Brüggemann and Lütkepohl (2001)

for more details). This strategy is equivalent to sequentially eliminating those regressors

with the smallest absolute values of t-ratios until all t-ratios (in absolute value) are greater

than some threshold value. Note that a single regressor is eliminated in each step only. Then

new t-ratios are computed for the reduced model.

Another possible sequential elimination algorithm implemented in JMulTi is a Top-Down

(TD) procedure which starts from the last regressor in the equation and checks if deleting it

reduces the criterion value. In that case it is eliminated. Otherwise it is maintained. Then

the second last regressor is checked and so on. Obviously, this procedure depends on the

ordering of the variables in the model and, hence, in the equation.
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There is also a System SER procedure implemented in JMulTi . In this procedure, in each

step the parameter with the smallest t-ratio is checked and potentially eliminated. The deci-

sion regarding the elimination can be based on model selection criteria or a threshold value is

specified and only variables with a t-ratio larger than the threshold are maintained eventually.

Because identification problems may arise in the course of a selection run in structural from

models with Γ0 6= I, the subset selection procedures only work for reduced form models.

Therefore, to apply the automatic subset selection procedures, all nonzero off-diagonal ele-

ments of Γ0 have to be replaced by zero.

4.2 Specification of Subset Restrictions and Search Strategy in

JMulTi

To get to the subset specification panel you need to select Specification→Specify Subset Model.

There you see the full model defined in the selection panel, see Sec. 3, with the possibility to

include or exclude certain coefficients from the estimation. You may use the RIGHT mouse

click over the tables to set a property for whole matrices.

It is also possible to let JMulTi search for restrictions automatically. To do this you need to

define a search strategy. The following strategies are available:

System SER see 4.1, selection based on information criterion

SER/Testing Procedure see 4.1

Top Down see 4.1

System Testing Procedure see 4.1, selection based on a threshold value

For each strategy one may select the model selection criterion, for the System Testing

Procedure the threshold value can be specified. You may exclude or include certain vari-

ables regardless of what the search procedure tells you by setting them either to 0 or to !.

If you do not use a search procedure but estimate the model with manually set restrictions,

there is no difference between ! and *. The display of the results of the estimation with

subset restrictions is described in Sec. 2.3.
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Figure 7: Specification of Subset Restrictions and Search Strategy for VECMs
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5 Plotting the EC term

It is possible to plot and display different representations of the r estimated error correction

terms. The following representation are available:

• β∗
′

Kyt−1

• β∗
′

[
yt−1

Dco
t−1

]

• β∗
′

Kyt−1M

• β∗
′

[
yt−1

Dco
t−1

]
M

with β∗K denoting the first K rows of β∗ that correspond to the K lagged endogenous variables

in the cointegration relation. The matrix M is defined as

M = IT −X(X ′X)−1X ′

with X ′ = [X0, . . . , XT−1], X ′
t−1 = (∆y′t−1, . . . , ∆y′t−p, CD′

t, x
′, x′t−1, . . . , x

′
t−q) Multiplication

with M has the effect of eliminating the short-run dynamics.

Figure 8: EC plot panel

17



6 Residual Analysis

To access the residual analysis you have to specify and estimate a model first. It is then

possible to select the menu item Model Checking→Residual Analysis. In the following the

estimation residuals or residual vectors are denoted by ût. In JMulTi the residual analysis is

split up into several different panels.

Figure 9: Available Panels for Residual Analysis

Diagnostic Tests to convey a range of diagnostic tests, see Sec. 7

Plot/Add residuals can be plotted in several ways as well as added again to the set of

available series

Correlation for graphical autocorrelation and crosscorrelation analysis see Sec. 8

Spectrum it is possible to show the spectrum of the available residuals, see the respective

description in helpsection Initial Analysis

Kernel Density for a description of kernel density estimation, see the respective descrip-

tion in helpsection Initial Analysis
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7 Diagnostic Tests

7.1 Background

In JMulTi , tests for residual autocorrelation, nonnormality and conditional heteroskedastic-

ity are available for checking the adequacy of estimated VECMs.

Portmanteau test for autocorrelation

A portmanteau test for residual autocorrelation may be applied if a pure VEC model possibly

with subset restrictions but without exogenous variables has been fitted. The test checks

the null hypothesis

H0 : E(utu
′
t−i) = 0, i = 1, . . . , h,

against the alternative that at least one autocovariance and, hence, the corresponding auto-

correlation is nonzero. The test statistic has the form

Qh = T

h∑
j=1

tr(Ĉ ′
jĈ

−1
0 ĈjĈ

−1
0 )

where Ĉi = T−1
∑T

t=i+1 ûtû
′
t−i. The test results in JMulTi use an approximation to the dis-

tribution of the test statistic under the null hypothesis based on a χ2(K2h−n∗) distribution.

Here n∗ denotes the number of estimated loading (α) and short-run parameters (Γj) in the

VEC model under consideration. Restricted parameters do not count and also the deter-

ministic terms do not count in evaluating n∗. The following adjusted portmanteau statistic

is also available,

Q∗
h = T 2

h∑
j=1

1

T − j
tr(Ĉ ′

jĈ
−1
0 ĈjĈ

−1
0 ).

Its distribution may be closer to the approximating χ2 distribution under the null hypothesis.

The choice of h is important for the test performance. If h is chosen too small, the χ2

approximation to the null distribution may be very poor whereas a large h may result in a

loss of power.

LM tests for autocorrelation

The LM test for h-th order residual autocorrelation assumes a model

ut = B∗
1ut−1 + · · ·+ B∗

hut−h + errort

and checks

H0 : B∗
1 = · · · = B∗

h = 0 vs. H1 : B∗
1 6= 0 or · · · or B∗

h 6= 0.
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The auxiliary model

Γ0ût = αβ∗′
[

yt−1

Dco
t−1

]
+ Γ1∆yt−1 + · · ·+ Γp∆yt−p

+B0xt + · · ·+ Bqxt−q + CDt + B∗
1 ût−1 + · · ·+ B∗

hût−h + et

is considered. The model is estimated by the same method as the original model with ût,

t ≤ 0, replaced by zero.

Denoting the estimation residuals by êt (t = 1, . . . , T ), the residual covariance matrix esti-

mator obtained from the auxiliary models is

Σ̃e =
1

T

T∑
t=1

êtê
′
t.

Moreover, reestimating the relevant auxiliary model without the lagged residuals ût−i, that

is, imposing the restriction B∗
1 = · · · = B∗

h = 0, and denoting the resulting residuals by êR
t ,

the corresponding covariance matrix estimator is

Σ̃R =
1

T

T∑
t=1

êR
t êR′

t .

The LM statistic is

LMh = T
(
K − tr(Σ̃−1

R Σ̃e)
)
≈ χ2(hK2).

Tests for nonnormality

The idea underlying the nonnormality tests is to transform the residual vector such that

its components are independent and then check the compatibility of the third and fourth

moments with those of a normal distribution. In a first step, the residual covariance matrix

is estimated as

Σ̃u = T−1

T∑
t=1

(ût − û)(ût − û)′

and the square root matrix Σ̃
1/2
u is computed. The tests for nonnormality may be based on

the skewness and kurtosis of the standardized residuals ûs
t = (ûs

1t, . . . , û
s
Kt)

′ = Σ̃
1/2
u (ût − û):

b1 = (b11, . . . , b1K)′ with b1k = T−1

T∑
t=1

(ûs
kt)

3

and

b2 = (b21, . . . , b2K)′ with b2k = T−1

T∑
t=1

(ûs
kt)

4.

Defining

s2
3 = Tb′1b1/6
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and

s2
4 = T (b2 − 3K)′(b2 − 3K)/24,

where 3K = (3, . . . , 3)′ is a (K× 1) vector, a multivariate version of a Lomnicki-Jarque-Bera

statistic is

LJBK = s2
3 + s2

4.

The statistics s2
3 and s2

4 have χ2(K) limiting distributions and JBK has a χ2(2K) asymp-

totic distribution if the normality null hypothesis holds. The latter statistic was proposed

by Doornik and Hansen (1994).

An alternative way of computing standardized residuals was considered by Lütkepohl (1991,

Chapter 4) who uses a Choleski decomposition of the residual covariance matrix. Let P̃ be

a lower triangular matrix with positive diagonal such that P̃ P̃ ′ = Σ̃u. Then the residuals

are standardized as ûs
t = P̃−1(ût − ¯̂u). Computing the third and fourth moments as in the

foregoing as well as s2
3L and s2

4L corresponding to s2
3 and s2

4, respectively, gives LJBL
K =

s2
3L + s2

4L with asymptotic χ2(2K) distribution under normality. Again, s2
3L and s2

4L have

χ2(K) limiting distributions.

ARCH-LM test

A multivariate ARCH-LM test may be based on the multivariate regression model

vech(ûtû
′
t) = β0 + B1vech(ût−1û

′
t−1) + · · ·+ Bqvech(ût−qû

′
t−q) + errort, (6)

where vech is the column stacking operator for symmetric matrices which stacks the columns

from the main diagonal downwards, β0 is 1
2
K(K+1)-dimensional and the Bj are

(
1
2
K(K + 1)× 1

2
K(K + 1)

)

coefficient matrices (j = 1, . . . , q). The pair of hypotheses

H0 : B1 = · · · = Bq = 0 vs. H1 : B1 6= 0 or · · · or Bq 6= 0

is tested. It is checked by the multivariate LM statistic

V ARCHLM(q) =
1

2
TK(K + 1)R2

m,

where

R2
m = 1− 2

K(K + 1)
tr(Ω̂Ω̂−1

0 ),

Ω̂ is the residual covariance matrix of the 1
2
K(K + 1)-dimensional regression model (6)

and Ω̂0 is the corresponding matrix with q = 0. The statistic is similar to the one de-

scribed by Doornik and Hendry (1997, Sec. 10.9.2.4) and the test is based on an approximate

χ2(qK2(K + 1)2/4) distribution. In addition univariate ARCH tests can be applied to the

individual residual series. If ARCH of order q is tested, the univariate statistics may be used

in conjunction with critical values or p-values based on a χ2(q) distribution. Alternatively,

the statistic may be divided by q and used in conjunction with an F (q, T ) distribution.
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7.2 Implementation of Diagnostic Tests in JMulTi

The following tests are available:

Portmanteau test is only available for models without exogenous variables, see Sec. 7.1

LM test see Sec. 7.1

Tests for nonnormality multivariate and univariate versions are given, see Sec. 7.1

ARCH-LM multivariate and univariate versions can be selected, see Sec. 7.1

Figure 10: Diagnostic Tests for VEC Models in JMulTi
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8 Correlation Analysis

8.1 Autocorrelation

In JMulTi residual autocorrelations (ACs) for a single residual series ût, ρ̃u,h = γ̃u,h/γ̃u,0, are

obtained from

γ̃u,h =
1

T

T∑

t=h+1

(ût − ¯̂u)(ût−h − ¯̂u)

where ¯̂u = T−1
∑T

t=1 ût is the sample mean.

The partial autocorrelation (PAC) between ut and ut−h is the conditional autocorrelation

given ut−1, . . . , ut−h+1. The corresponding sample quantity âh is obtained as the OLS esti-

mator of the coefficient αh in an autoregressive model

ût = ν + α1ût−1 + · · ·+ αhût−h + errort.

In JMulTi , OLS estimates are obtained for each h with sample size T − h. Approximate

95% confidence bounds specified as ±2/
√

T are used. ACs and PACs are computed for the

single residual series.

8.2 Crosscorrelation

To get an overall picture of the correlation structure of the different residual series, a cross-

correlation plot may be used. For VEC models the standard ±2/
√

T confidence bounds are

provided in JMulTi .

8.3 Plotting Autocorrelations and Crosscorrelations in JMulTi

The available residuals are shown in the two lists from which the ones have to be selected

for which autocorrelations or crosscorrelations are desired. The selection is done as usual by

highlighting the residual series.

plotting AC/PAC select the desired series from the left list and press the Autocorrelation

button

plotting crosscorrelations select the desired combination of series in the two lists and

press the Crosscorrelation button

Number of lags the autocorrelation functions are computed up to the specified lag order
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Figure 11: Correlation Analysis for VEC Models in JMulTi

Squared residuals the residuals are squared before the autocorrelations are computed
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9 Stability Analysis

For VEC models, JMulTi offers the following options to check parameter constancy through-

out the sample period: recursive estimates, recursive eigenvalues and Chow tests.

9.1 Recursive Coefficients

Recursive parameter estimates are obtained by simply estimating the model using only data

for t = 1, . . . , τ and letting τ vary from some small value to T , the end of the original

sample. Thereby sequences of coefficient estimates and estimates of the covariance matrix

of the asymptotic distributions are obtained. The same estimation method is used that is

also used for the full sample estimation. The cointegration relations are not reestimated,

however. They are fixed at the full sample estimates in the recursive estimation. The

series of estimates together with two-standard error bands are plotted and can convey useful

information on the relative importance of new observations that are added to the sample.

Implementation in JMulTi

To get to the recursive parameter estimation panel you need to select Model Checking

→Stability Analysis →Recursive Coefficients. The full model as specified in the selection

panel is displayed for the user to choose the coefficients for which the graphs of recursive

estimates are to be produced. Several choices have to be made before displaying the graphs.

Start date marks the beginning of the recursive estimation.

Each coeff in separate window displays each coefficient in a separate graph.

Group different lags in separate windows displays graphs with each containing all

the coefficients of a parameter matrix as shown in the selection panel.

9.2 Recursive Eigenvalues

9.2.1 Background

In JMulTi , for VEC models without parameter restrictions and without exogenous variables

the eigenvalues from a reduced rank regression which are also used in the cointegration rank

tests can be computed recursively by the Johansen estimation procedure (Johansen (1995)).

Hansen and Johansen (1999) propose recursive statistics for stability analysis of VEC models

which are partly available in JMulTi . Let λ
(τ)
i be the i-th largest eigenvalue based on sample

moments from the first τ observations only. For a time invariant model, approximate 95%
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Figure 12: Recursive parameter estimates for VECM.

confidence intervals for the nonzero true eigenvalues corresponding to λ
(τ)
1 , . . . , λ

(τ)
r are

[
λ

(τ)
i

λ
(τ)
i + (1− λ

(τ)
i ) exp(1.96σ̂ii)

,
λ

(τ)
i

λ
(τ)
i + (1− λ

(τ)
i ) exp(−1.96σ̂ii)

]
.

Here σ̂2
ii is 2/T times the i + (i− 1)[r + K(p− 1)]-th diagonal element of the matrix Υ + Υ′

which in turn is based on

Υ = (Σ̃−1 ⊗ Σ̃−1)(I −A⊗A)−1,

where

A =




β̃′α̃ + I β̃′Γ̃1 · · · β̃′Γ̃p−2 β̃′Γ̃p−1

α̃ Γ̃1 · · · Γ̃p−2 Γ̃p−1

0 I 0 0
...

. . .
...

...

0 0 · · · I 0




and Σ̃ can be determined from

Σ̃ = AΣ̃A′ + Σ̃E .

Σ̃E is the usual estimator of the covariance matrix of (u′tβ, u′t, 0, . . . , 0)′. In JMulTi , the

confidence intervals may be plotted for consecutive sample sizes τ = T1, . . . , T .

The recursive eigenvalues can also be used as the basis for formal tests of parameter con-

stancy. Let

ξ
(τ)
i = log

(
λ

(τ)
i

1− λ
(τ)
i

)

and

T (ξ
(τ)
i ) =

τ

T
|(ξ(τ)

i − ξ
(T )
i )/σ̂ii|.

26



Hansen and Johansen (1999) derive the limiting distribution of

sup
1≤τ≤T

T (ξ
(τ)
i ).

Critical values for the limiting null distribution are tabulated by Ploberger, Krämer and

Kontrus (1989). Stability is rejected if T (ξ
(τ)
i ) exceeds the critical value.

Another possible test statistic is based on the sum of the r largest recursive eigenvalues:

T
(

r∑
i=1

ξ
(τ)
i

)
=

τ

T

∣∣∣∣∣[
r∑

i=1

(ξ
(τ)
i − ξ

(T )
i )]/σ̂1−r

∣∣∣∣∣ .

Here σ̂1−r is an estimator of the standard deviation of the difference
∑r

i=1(ξ
(τ)
i − ξ

(T )
i ) which

is based on the relevant part of the matrix Υ + Υ′. Again, Hansen and Johansen (1999)

show that

sup
1≤τ≤T

T
(

r∑
i=1

ξ
(τ)
i

)

can be used for checking model stability.

In JMulTi different versions of these tests are implemented. If the short-term dynamics are

assumed to be stable and a test of parameter change in the long-run part only is desired,

one may first concentrate out the short-term parameters based on the full sample and then

one may focus on recursive estimation of α and β.

9.2.2 Implementation in JMulTi

The recursive eigenvalues panel is reached by selecting Model Checking →Stability Analysis

→Recursive Eigenvalues. It is only available if a VECM without parameter restrictions and

without exogenous variables is specified. Note, however, that exogenous variables are ignored

if they are included in the original model and the Johansen estimation method is used. In

that case, recursive eigenvalues of the model without the exogenous variables are reported.

Several choices have to be made before displaying the graphs of the recursive eigenvalues

and Tau (T ) statistics.

Start date marks the beginning of the recursive estimation

Sign. level for Tau-stability tests a choice can be made from several different options;

it determines the critical value shown in the graph

Likelihood function estimation if using concentrated likelihood func. is chosen, the

short-term parameters are concentrated out on the basis of the full sample and only the

long-run part is estimated recursively; if recursively estimate all parameters is selected, the

short-run part of the model is also estimated recursively
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Eigenvalue CI estimation shows confidence intervals of recursive eigenvalues; if the

option full sample estimates of standard errors is chosen, the standard error σ̂ii is estimated

on the basis of the full sample and not recursively; if the alternative choice recursive sample

estimates of standard errors is made, σ̂ii is also estimated recursively based on the same

subsamples as the recursive eigenvalues

9.3 Chow tests

In JMulTi , sample-split (SS), break-point (BP) and Chow forecast (CF) tests are available

for VEC models. The SS and BP Chow tests for checking for a structural break in period

TB proceed as follows. The model under consideration is estimated from the full sample

of T observations and from the first T1 and the last T2 observations, where T1 < TB and

T2 ≤ T − TB. Denoting the resulting residuals by ût, û
(1)
t and û

(2)
t , respectively, and using

the notation

Σ̃u = T−1

T∑
t=1

ûtû
′
t,

Σ̃1,2 = T−1
1

T1∑
t=1

ûtû
′
t + T−1

2

T∑
t=T−T2+1

ûtû
′
t,

Σ̃(1) = T−1
1

T1∑
t=1

û
(1)
t û

(1)′
t

and

Σ̃(2) = T−1
2

T∑
t=T−T2+1

û
(2)
t û

(2)′
t ,

the BP test statistic is

λBP = (T1 + T2) log det Σ̃1,2 − T1 log det Σ̃(1) − T2 log det Σ̃(2) ≈ χ2(k) (under stability).

Here k is the difference between the sum of the number of parameters (including those in

the residual covariance matrices) estimated in the first and last subperiods and the number

of parameters in the full sample model, not counting the cointegration parameters in the

matrix β. The null hypothesis of constant parameters is rejected if λBP is large.

Whereas the BP test checks if any of the parameters vary (except the cointegration param-

eters), the SS test is derived under the assumption that the residual covariance matrix Σu is

constant and checks against the alternative that the other coefficients may vary. It has the

form

λSS = (T1 + T2)[log det Σ̃1,2 − log det{(T1 + T2)
−1(T1Σ̃(1) + T2Σ̃(2))}]

and it is also used in conjunction with a limiting χ2 distribution. The degrees of freedom

are again obtained as the number of restrictions imposed by assuming constant coefficients
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rather than a break in period TB.

The CF statistic is

λCF =
1− (1−R2

r)
1/s

(1−R2
r)

1/s
· Ns− q

KT2

≈ F (KT2, [Ns− q]),

where [x] denotes the integer part of the real number x,

s =

(
K2T 2

2 − 4

K2 + T 2
2 − 5

)1/2

, q =
KT2

2
+ 1, N = T − k1 − T2 − (K − T2 + 1)/2.

Here k1 is the number of regressors in each equation of the time invariant model and

R2
r = 1−

(
T1

T

)K

|Σ̃(1)|(|Σ̃u|)−1.

The CF test tests against the alternative that all coefficients including the residual covariance

matrix may vary. It also rejects the null hypothesis of constant parameters for large values

of the test statistic. The test is only available for full models without subset restrictions.

Because the actual small sample distributions of the test statistics under H0 (for models with

time invariant parameters) may be quite different from the asymptotic χ2- or F -distributions

(see Candelon and Lütkepohl (2000)), JMulTi offers bootstrap p-values. They are computed

as described in the corresponding helpsection for VAR models. Now, of course, with cointe-

gration relations estimated for the full sample period.

Dealing with dummies In practice, one often has regression models with a constant,

where in addition several of the remaining regressor variables are dummies which might also

be constant either for the first or for the second part of the sample created by splitting

the sample at TB. In order to avoid perfect collinearity between the regressors, JMulTi

deletes dummies automatically from the estimation of either the first or the second part of

the sample where appropriate with corresponding adjustment of the degrees of freedom if

necessary.

Specification in JMulTi

Chow tests can be performed for individual time periods or for a range of time points. In

the latter case the results are given in tables as well as graphs.

Input

Break date allows you to specify a break period for which Chow tests are to be performed
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Search over datapoints selecting this option allows you to perform Chow tests not only

for a single break date but over a range of the time points as specified in the adjacent menu

entry

Test range allows you to choose the range for the Search over datapoints procedure

Graph of bootstrapped p-values checking this option produces graphs of p-values of

the tests calculated for the break dates in the specified range

Number of bootstrap replications specifies the number of replications used to construct

the empirical distribution function of the statistics. It has a substantial impact on the

required computation time. For reliable results it may be necessary to select a few thousand

replications although this may result in substantial waiting times

Output

break point Chow test (chow-bp) value of BP test statistic

boot p-val shows the bootstrapped p-value of the corresponding statistic

chiˆ2 p-val shows the p-value of the approximating χ2 distribution corresponding to the

BP statistic

df degrees of freedom of the corresponding χ2 distribution

sample split Chow test (chow-ss) value of SS test statistic

boot p-val shows the bootstrapped p-value of the corresponding statistic

chiˆ2 p-val shows the p-value of the approximating χ2 distribution corresponding to the

SS statistic

df degrees of freedom of the corresponding χ2 distribution

Chow forecast test (chow-fc) values of CF test statistics, only available for models

without subset restrictions

boot p-val shows the bootstrapped p-value of the corresponding statistic
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F p-val shows the p-value of the approximating F distribution corresponding to the CF

statistic

df1 numerator degrees of freedom of the corresponding F distribution

df2 denominator degrees of freedom of the corresponding F distribution, integer part of

Ns− q

Figure 13: Chow tests for a single break point in a VECM.
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Figure 14: Chow tests for a range of possible break points in a VEC model.
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10 Causality Analysis

10.1 Background

For VECMs two types of causality tests are implemented in JMulTi , tests for Granger-

causality and tests for instantaneous causality. For both types of tests the vector of en-

dogenous variables is divided in two subvectors, y1t and y2t, with dimensions K1 and K2,

respectively, so that K = K1 + K2. The subvector y1t is said to be Granger-causal for y2t

if it contains useful information for predicting the latter set of variables. For testing this

property, the levels VAR form (2) without exogenous variables of the model is considered.

If that model contains p + 1 lags of the endogenous variables as in (2), the test is based on

a model with p + 2 lags of the endogenous variables,
[

y1t

y2t

]
=

p+2∑
i=1

[
α11,i α12,i

α21,i α22,i

][
y1,t−i

y2,t−i

]
+ CDt +

[
u1t

u2t

]

as proposed, e.g., by Dolado and Lütkepohl (1996). The null hypothesis that y1t is not

Granger-causal for y2t is tested by checking the null hypothesis

α21,i = 0, i = 1, 2, . . . , p + 1.

A Wald test statistic, divided by the number of restrictions pK1K2, is used in conjunction

with an F (pK1K2, KT − n∗) distribution for testing the restrictions. Here n∗ is the total

number of parameters in the system (see Lütkepohl (1991)), including the parameters of

the deterministic term. Of course, the role of y1t and y2t can be reversed to test Granger-

causality from y2t to y1t.

The test is problematic if some of the variables are I(d) with d ≥ 2. In that case the assumed

asymptotic distribution of the test statistic may not be valid under the null hypothesis.

Instantaneous causality is characterized by nonzero correlation of u1t and u2t. Thus the null

hypothesis

H0 : E(u1tu
′
2t) = 0

is tested against the alternative of a nonzero covariance between the two error vectors in

testing for instantaneous causality. The Wald test described in Lütkepohl (1991, Sec. 3.6.3)

is reported in JMulTi .

10.2 Causality Analysis in JMulTi

Once a model without exogenous variables is specified, the causality analysis can be accessed

by clicking on the menu Structural Analysis→Causality Tests. The endogenous variables are

shown in the list. You can select from 1 up to K−1 variables. The respective H0 hypothesis
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then appears on the panel and the tests can be performed by pressing the Execute Tests

button.

Figure 15: Causality Analysis for VECMs in JMulTi
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11 Impulse Response Analysis

Impulse response analysis of VEC models is based on the levels VAR form and is implemented

in JMulTi as for VAR models (see the Impulse Response Analysis for VAR Modeling).
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12 Forecast Error Variance Decomposition

Forecast error variance decomposition for VEC models is based on the levels VAR form and

is implemented in JMulTi as for VAR models (see the Forecast Error Variance Decomposition

under VAR Modeling).
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13 SVEC Analysis

The SVEC (structural vector error correction) model can be used to identify the shocks to

be traced in an impulse response analysis by imposing restrictions on the matrix of long-run

effects of shocks and the matrix B of contemporaneous effects of the shocks.

The matrix B is defined such that ut = Bεt in (1) and, assuming that (1) is in reduced from,

the matrix of long-run effects of the ut residuals is

Ξ = β⊥

(
α′⊥(IK −

p−1∑
i=1

Γi)β⊥

)−1

α′⊥.

Hence, the long-run effects of ε shocks are given by

ΞB.

rk(Ξ) = K − r and, hence, ΞB has rank K − r. Thus, the matrix ΞB can have at most r

columns of zeros. Hence, there can be at most r shocks with transitory effects (zero long-run

impact) and at least k∗ = K − r shocks have permanent effects. Due to the reduced rank of

the matrix, each column of zeros stands for only k∗ independent restrictions. k∗(k∗ − 1)/2

additional restrictions are needed to exactly identify the permanent shocks and r(r − 1)/2

additional contemporaneous restrictions identify the transitory shocks. For examples see

Breitung, Brüggemann and Lütkepohl (2004). JMulTi has a facility to impose restrictions

on B and ΞB.

Estimation is done by maximum likelihood using the reduced form estimates obtained by

the estimation method selected in the Specify VEC Model menu (see Breitung et al. (2004)).

If the algorithm does not converge or problems with the estimation algorithm occur some

manual adjustments may be necessary. Problems can be due to inappropriate restrictions.

Once an SVEC model has been estimated, SVEC IRA (impulse response analysis) and SVEC

FEVD (forecast error variance decomposition) are activated and can be used.

13.1 Implementation in JMulTi

To access the SVEC analysis, estimate a reduced form VECM first and then go to SVEC→Estimate

SVEC Model. Then impose the restrictions by clicking on the relevant elements of the ma-

trices activated in the panel. The model will be estimated upon pressing the Point Estimates

Only or the Estimate with Boot. Std. Err. button. In the latter case, bootstrap standard

errors and corresponding t-ratios for the estimated elements of B and ΞB are provided.

Choose the desired number of bootstrap replications before estimation. If there are conver-

gence problems, press the Optimization Settings button and adjust the settings in the panel.
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Remember, however, that convergence problems can also be due to inappropriate restrictions.

As mentioned earlier, once the SVEC model has been estimated successfully, SVEC IRA

and SVAR FEVD are activated. They can be accessed by going to SVEC→SVEC IRA or

SVEC→SVEC FEVD.
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14 Forecasting with VEC Models

Forecasting with VEC models is based on the levels VAR form and is implemented in JMulTi

as for VAR models (see the Forecasting section under VAR Modeling).
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